Description of Strengthening Mechanism in Layered Ceramic Composites

Article Preview

Abstract:

The aim of this paper is to describe specific crack behaviour in the layered alumina-zirconia ceramic composite with strong interfaces and its strengthening mechanism. Different coefficients of thermal expansion of individual constituents of ceramic composite cause high residual stresses inside the layers during the sintering process. Compressive residual stresses can significantly influence the crack propagation through the laminate hereby improve the resistance of the material to the crack propagation. Estimation of crack behaviour in laminate was performed assuming the validity of linear elastic fracture mechanics using the criterion based on the strain energy density factor derived by Sih. This paper describes the strengthening mechanism in layered ceramic composites and prediction of their failure which contributes to better understanding of the fracture behaviour of the layered ceramic composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-96

Citation:

Online since:

September 2015

Export:

Price:

* - Corresponding Author

[1] R. Bermejo, J. Pascual, T. Lube, R. Danzer: Journal of the European Ceramic Society, Vol. 28 (2008), pp.1575-1583.

Google Scholar

[2] Z. Knésl, L. Náhlík, J. Radon: Computational Material Science, Vol. 28 (2003), pp.620-627.

Google Scholar

[3] D. Leguillon, E. Martin: International Journal of Fracture, Vol. 179 (2013), pp.157-167.

Google Scholar

[4] H. Hadraba, D. Drlík, Z. Chlup, K. Máca, I. Dlouhý, J. Cihlář: Journal of the European Ceramic Society, Vol. 33 (2013), pp.2305-2312.

Google Scholar

[5] H. Hadraba, J. Klimeš, K. Maca: Journal of the Material Sciences, Vol. 42 (2007), pp.6404-6411.

Google Scholar

[6] R. Bermejo, R. Danzer: Engineering Fracture Mechanics, Vol. 77 (2010), pp.2126-2135.

Google Scholar

[7] R. Bermejo, L. Llanes, M. Anglada, P. Supancic, T. Lube: Key Engineering Materials, Vol. 290 (2005), pp.191-198.

Google Scholar

[8] G.C. Sih: International Journal of Fracture, Vol. 10 (1974), pp.305-321.

Google Scholar

[9] L. Náhlík, L. Šestáková, P. Hutař, R. Bermejo: Engineering Fracture Mechanics, Vol. 77 (2010) p.2192.

DOI: 10.1016/j.engfracmech.2010.02.023

Google Scholar

[10] L. Náhlík, L. Šestáková, P. Hutař: Computational Materials Science, Vol. 46 (2009), p.614.

Google Scholar

[11] C.R. Chen, R. Bermejo, O. Kolednik: Engineering Fracture Mechanics, Vol. 77 (2010), pp.2567-2576.

Google Scholar