Kinetics of Phase Transformations in Mg2Ni-H System

Article Preview

Abstract:

Kinetics of hydrogen desorption from Mg2NiH4 was studied. Experimental material was prepared by two techniques – by melting and casting and by ball-milling and compacting into pellets. Experimental materials were hydrogen charged at elevated temperature and pressure. The pellets were charged in two different regimes resulting in structures with high fraction of twinned low-temperature phase LT2 and with low fraction of LT2. It was made an attempt to measure diffusion coefficients of hydrogen and its temperature dependence both in high-temperature (HT) and in low-temperature (LT) phases of Mg2NiH4. The measurement was carried out in temperature interval from 449 K to 576 K by the volumetric method. It was found that the LT2 slows-down the desorption rate considerably.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 138)

Pages:

71-90

Citation:

Online since:

March 2008

Export:

Price:

[1] M.L. Trudeau: MRS Bulletin Vol. 24 (1999), p.23.

Google Scholar

[2] D.K. Ross: Vacuum Vol. 80 (2006), p.1084.

Google Scholar

[3] V. Bérubé, G. Radtke, M. Dresselhaus and G. Chen: Int. J. Energ. Res. Vol. 31 (2007), p.637.

Google Scholar

[4] R.B. Schwarz: MRS Bulletin Vol. 24 (1999), p.40.

Google Scholar

[5] T. B. Massalski: Binary Alloy Phase Diagrams, ASM International, ASM/NIST (1996), CD ROM.

Google Scholar

[6] Y. Kusadome, K. Ikeda, Y. Nakamori, S. Orimo and Z. Horita: Scripta Mater. Vol. 57 (2007), p.751.

DOI: 10.1016/j.scriptamat.2007.06.042

Google Scholar

[7] G. Barkhordarian, T. Klassen and R. Borman: Scripta Mater. Vol. 49 (2003), p.213.

Google Scholar

[8] H. Blomqvist, E. Rönnebro, D. Noréus and T. Kuji: J. Alloy Comp. Vol. 330-332 (2002), p.267.

Google Scholar

[9] Y. Kojima, Y. Kawai and T. Haga: J. Alloy Comp. Vol. 424 (2006), p.294.

Google Scholar

[10] A. Montone, M.V. Antisari, N. Abazović, J.G. Novaković, L. Pasquini, E. Bonetti and A.L. Fiorini: Mat. Sci. For. Vol. 555 (2007), p.335.

DOI: 10.4028/www.scientific.net/msf.555.335

Google Scholar

[11] R.G. Gao, J.P. Tu, X.L. Wang, X.B. Zhang and C.P. Chen: J. Alloy Comp. Vol. 356 (2003), p.649.

Google Scholar

[12] M. Martin, C. Gomel, C. Borkhart, E. Fromm: J. Alloys Comp. Vol. 238 (1996), p.193.

Google Scholar

[13] G.E. Fernández, D. Rodríguez and G. Mayer: Int. J. Hydrogen Energ. Vol. 23 (1998), p.1193.

Google Scholar

[14] S. Fang, Z. Zhou, J. Zhang, M. Yao, F. Feng and D.O. Northwood: J. Alloy Comp. Vol. 293 (1999), p.10.

Google Scholar

[15] G. Liang, J. Huot, S. Boily and R. Schulz: J. Alloy Comp. Vol. 305 (2000), p.239.

Google Scholar

[16] J.F. Fernandez, C.R. Sanchez: J. Alloy Comp. Vol. 340 (2002), p.189.

Google Scholar

[17] I.E. Gabis, A.P. Voit, E.A. Evard, Yu.V. Zaika, I.A. Chernov and V.A. Yartis: J. Alloy Comp. Vol. 404 (2005), p.312.

Google Scholar

[18] Q. Li, Q. Lin, K. -Ch. Chou and L. Jiang: J. Mater. Sci. Vol. 39 (2004), p.61.

Google Scholar

[19] K. -Ch. Chou and K. Xu: Intermetallics Vol. 15 (2007), p.767.

Google Scholar

[20] K. -Ch. Chou, Q. Li, Q. Lin, L. -J. Jiang and K. -D. Xu: Int. J. Hydrogen Energy Vol. 30 (2005), p.301.

Google Scholar

[21] P.S. Rudman: J. Appl. Phys. Vol. 50 (1979), p.7195.

Google Scholar

[22] Z. Gavra and M.H. Mintz: Inorg. Chem. Vol. 18 (1979), p.3595.

Google Scholar

[23] H. Hayakawa, Y. Ishido, K. Nomura, H. Uruno and S. Ono: J. Less-Common Metals Vol. 103 (1984), p.277.

DOI: 10.1016/0022-5088(84)90251-0

Google Scholar

[24] D. Noréus and L. Kihlborg: J. Less-Common Metals Vol. 123 (1986), p.233.

Google Scholar

[25] P. Zolliker, K. Yvon and Ch. Bearlocher: J. Less-Common Metals Vol. 115 (1986), p.65.

Google Scholar

[26] L.M. Post and J.J. Murray: J. Less-Common Metals Vol. 134 (1987), p.15.

Google Scholar

[27] P. Selvam, B. Viswanathan, C.S. Swamy and V. Srinivasan: Int. J. Hydrogen Energ. Vol. 13 (1988), p.749.

Google Scholar

[28] S. Hayashi and K. Hayamizu: J. Less-Common Metals Vol. 5 (1989), p.31.

Google Scholar

[29] H. Blomqvist, E. Rönnebro, D. Noréus and T. Kuji: J. Alloy Comp. Vol. 330 (2002), p.268.

Google Scholar

[30] H. Blomqvist and D. Noréus: J. Appl. Phys. Vol. 91 (2002), p.5141.

Google Scholar

[31] H. Blomqvist, D. Noréus, O. Babushkin, F. Nion and E. Vourien: J. Mater. Sci. Let. Vol. 22 (2003), p.1487.

Google Scholar

[32] W.G. Kim, S. -C. Ur, Y. -G. Lee, Y. -J. Kim and T. -W. Hong: Mat. Sci. For. Vol. 544 (2007), p.311.

Google Scholar

[33] G.N. García, J.P. Abriata and J.O. Sofo: Phys. Rev. B Vol. 59 (1999), p.11746.

Google Scholar

[34] ICSD Database release 2007/1, FIZ Karlsruhe, Germany.

Google Scholar

[35] JCPDS PDF-4 Full File 2004 Database, ICDD, Newton Square, Pennsylvania, U.S. A.

Google Scholar

[36] X'Pert HighScore Plus 2. 0a, PANanalytical B.V., Almelo, the Netherlands.

Google Scholar

[37] J. Senegas, A. Mikou, M. Pezat and B. Dariet: J. Solid State Chem. Vol. 52 (1984), p.1.

Google Scholar

[38] G.D. Sandrock, S. Suda, L. Schlapbach: in Hydrogen in Intermetallic Compounds, edited by L. Schlapbach, volume II, chapter 5, Springer, Berlin (1992).

Google Scholar

[39] H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids (Clarendon Press, Oxford 1959).

Google Scholar

[40] J. Crank: Mathematics of Diffusion (Clarendon Press, Oxford 1957).

Google Scholar

[41] J. Senegas, M. Y. Song, M. Pezat, B. Darriet: J. Less-Common Met. 129 (1987), 317.

Google Scholar

[42] H. Wipf: in Hydrogen in Metals, edited by H. Wipf, volume III of Topics in Applied Physics, Springer, Berlin, Heidelberg, New York (1997).

Google Scholar

[43] J. Renner and H.J. Grabke: Z. Metallkd. Vol. 69 (1978), p.639.

Google Scholar

[44] H.G. Schimmel, G.J. Kearley, J. Huot and F.M. Mulder: J. Alloy Comp. Vol. 404 (2005), p.235.

Google Scholar

[45] C. Nishimura, M. Komaki and M. Amano: J. Alloy Comp. Vol. 293 (1999), p.329.

Google Scholar

[46] M.A. Monge, R. Gonzales, A.I. Popov, R. Pareja, Y. Chen, E.A. Kotomin and M.M. Kuklja: Def. Dif. For. Vol. 169-170 (1999), p.1.

Google Scholar