J. For. Sci., 2017, 63(7):313-323 | DOI: 10.17221/36/2017-JFS

Transpiration and water potential of young Quercus petraea (M.) Liebl. coppice sprouts and seedlings during favourable and drought conditionsOriginal Paper

Marko STOJANOVIĆ*,1,2, Justyna SZATNIEWSKA1,2, Ina KYSELOVÁ1,2, Radek POKORNÝ1, Matjaž ČATER1,3
1 Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
2 Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
3 Slovenian Forestry Institute, Ljubljana, Slovenia

Increased frequency and intensity of drought events consequently affect oak high forests with the process of further decline, compromised growth and questionable natural regeneration. To overcome such difficulties, new adaptive strategies are required. Coppicing, as the oldest way of forest management, might provide some solutions. In our study two contrasting management systems, sessile oak coppice and high forest, were compared at the initial stages of regeneration and forest development. The transpiration of young oak sprouts and seedlings was monitored using sap flow systems during the 2015 growing season. The study of transpiration also included leaf water potential measurements during three measurement campaigns with contrasting weather conditions. Coppice sprouts transpired significantly more than seedlings on the individual tree and stand level during the entire growing season 2015; particularly large differences were observed during drought conditions. Coppice sprouts experienced lower water limitations due to the voluminous and deeper root system as indicated by leaf water potential results. Presented results attribute young coppices as one of the promising adaptable forest management types with a better adaptive strategy at the extreme sites under water limiting conditions.

Keywords: sessile oak; management system; comparison; sap flow; leaf water potential; water availability

Published: July 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
STOJANOVIĆ M, SZATNIEWSKA J, KYSELOVÁ I, POKORNÝ R, ČATER M. Transpiration and water potential of young Quercus petraea (M.) Liebl. coppice sprouts and seedlings during favourable and drought conditions. CAAS Agricultural Journals. 2017;63(7):313-323. doi: 10.17221/36/2017-JFS.
Download citation

References

  1. Abrams M.D. (1990): Adaptations and responses to drought in Quercus species of North America. Tree Physiology, 7: 227-238. Go to original source... Go to PubMed...
  2. Allen R.G., Pereira L.S., Raes D., Smith M. (1998): Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements - FAO Irrigation and Drainage Paper 56. Rome, FAO: 333.
  3. Altman J., Hédl R., Szabó P., Mazůrek P., Riedl V., Müllerová J., Kopecký M., Doležal J. (2013): Tree-rings mirror management legacy: Dramatic response of standard oaks to past coppicing in Central Europe. PloS ONE, 8: 1-11. Go to original source... Go to PubMed...
  4. Annighöfer P., Beckschäfer P., Vor T., Ammer C. (2015): Regeneration patterns of European oak species (Quercus petraea (Matt.) Liebl., Quercus robur L.) in dependence of environment and neighborhood. PloS ONE, 10: 1-16. Go to original source... Go to PubMed...
  5. Attocchi G. (2015): Silviculture of oak for high-quality wood production: Effects of thinning on crown size, volume growth and stem quality in even-aged stands of pedunculate oak (Quercus robur L.) in Northern Europe. [Ph.D. Thesis.] Alnarp, Swedish University of Agricultural Sciences: 85.
  6. Bednář P., Černý J. (2014): The influence of regeneration fellings on the development of artificially regenerated beech (Fagus sylvatica L.) plantations. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62: 859-867. Go to original source...
  7. Bolte A., Ammer C., Löf M., Madsen P., Nabuurs G.J., Schall P., Spathelf P., Rock J. (2009): Adaptive forest management in Central Europe: Climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research, 24: 473-482. Go to original source...
  8. Bond W.J., Midgley J.J. (2001): Ecology of sprouting in woody plants: The persistence niche. Trends in Ecology and Evolution, 16: 45-51. Go to original source... Go to PubMed...
  9. Brázdil R., Dobrovolný P., Trnka M., Kotyza O., Řezníčková L., Valášek H., Zahradníček P., Štěpánek P. (2013): Droughts in the Czech Lands, 1090-2012 AD. Climate of the Past, 9: 1985-2002. Go to original source...
  10. Březina I., Dobrovolný L. (2011): Natural regeneration of sessile oak under different light conditions. Journal of Forest Science, 57: 359-368. Go to original source...
  11. Čater M. (2015): A 20-year overview of Quercus robur L. mortality and crown conditions in Slovenia. Forests, 6: 581-593. Go to original source...
  12. CHMI (2015): Drought in the Czech Republic in 2015. Prague, Czech Hydrometerological Institute: 152.
  13. Del Tredici P. (2001): Sprouting in temperate trees: A morphological and ecological review. Botanical Review, 67: 121-140. Go to original source...
  14. Dickson R.E., Tomlinson P.T. (1996): Oak carbon metabolism in response to water stress. Annals of Forest Science, 53: 181-196. Go to original source...
  15. Dobrowolska D. (2006): Oak natural regeneration and conversion processes in mixed Scots pine stands. Forestry, 79: 503-513. Go to original source...
  16. Drake P.L., Mendham D.S., White D.A., Ogden G.N., Dell B. (2012): Water use and water-use efficiency of coppice and seedling Eucalyptus globulus Labill.: A comparison of stand-scale water balance components. Plant and Soil, 350: 221-235. Go to original source...
  17. Führer E. (1998): Oak decline in central Europe: A synopsis of hypotheses. In: McManus M.L., Liebhold A.M. (eds): Proceedings: Population Dynamics, Impacts and Integrated Management of Forest Defoliating Insects, Banska Stiavnica, Aug 18-23, 1996: 7-24.
  18. Fujimori T. (2001): Ecological and Silvicultural Strategies for Sustainable Forest Management. 1st Ed. Amsterdam, Elsevier Science: 412. Go to original source...
  19. Gaines K.P., Stanley J.W., Meinzer F.C., McCulloh K.A., Woodruff D.R., Chen W., Adams T.S., Lin H., Eissenstat D.M. (2016): Reliance on shallow soil water in a mixedhardwood forest in central Pennsylvania. Tree Physiology, 36: 444-458. Go to original source... Go to PubMed...
  20. Hochbichler E. (1993): Methods of oak silviculture in Austria. Annales des Sciences Forestières, 50: 583-591. Go to original source...
  21. Hsiao T.C. (1973): Plant responses to water stress. Annual Review of Plant Physiology and Plant Molecular Biology, 24: 519-570. Go to original source...
  22. IPCC (2007): Climate Change. The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. New York, Cambridge University Press: 104.
  23. Kadavý J., Kneifl M., Knott R. (2011): Biodiversity and Target Management of Endangered and Protected Species in Coppices and Coppices with Standards Included in System of Natura 2000: Methodology of Establishment of Experimental Research Plots in the Conversion to Coppice and Coppice-with-standards and Their Description. Brno, Mendel University in Brno: 58.
  24. Klimo E., Hager H., Kulhavý J. (eds) (2000): Spruce Monocultures in Central Europe: Problems and Prospects. EFI Proceedings No. 33, Joensu, June 22-25, 1998: 208.
  25. Kohler M., Sohn J., Nagele G., Bauhus J. (2010): Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? European Journal of Forest Research, 129: 1109-1118. Go to original source...
  26. Kopecký M., Hédl R., Szabó P. (2013): Non-random extinctions dominate plant community changes in abandoned coppices. Journal of Applied Ecology, 50: 79-87. Go to original source... Go to PubMed...
  27. Lambers H., Chapin F.S., Pons T.L. (2008): Plant Physiological Ecology. New York, Springer-Verlag: 605. Go to original source...
  28. Lindroth A., Čermák J., Kučera J., Cienciala E., Eckersten H. (1995): Sap flow by the heat-balance method applied to small-size Salix trees in a short-rotation forest. Biomass and Bioenergy, 8: 7-15. Go to original source...
  29. Matthews J.D. (1991): Silvicultural Systems. New York, Oxford University Press: 284. Go to original source...
  30. Matula R., Svátek M., Kůrová J., Úradníček L., Kadavý J., Kneifl M. (2012): The sprouting ability of the main tree species in Central European coppices: Implications for coppice restoration. European Journal of Forest Research, 131: 1501-1511. Go to original source...
  31. McDowell N.G. (2011): Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155: 1051-1059. Go to original source... Go to PubMed...
  32. Merchant A. (2016): The importance of storage and redistribution in vascular plants. Tree Physiology, 36: 533-535. Go to original source... Go to PubMed...
  33. Ministry of Agriculture of the Czech Republic (2012): Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2011. Prague, Ministry of Agriculture of the Czech Republic: 138.
  34. NFI (2007): National Forest Inventory in the Czech Republic 2001-2004: Introduction, Method, Results. Brandýs nad Labem, Forest Management Institute: 224.
  35. Pietras J., Stojanović M., Knott R., Pokorný R. (2016): Oak sprouts grow better than seedlings under drought stress. iForest - Biogeosciences, 9: 529-535. Go to original source...
  36. Plíva K. (1987): Typologický klasifikační systém ÚHÚL. Brandýs nad Labem, ÚHÚL: 52.
  37. Poorter H., Niinemets Ü., Poorter L., Wright I.J., Villar R. (2009): Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 182: 565-588. Go to original source... Go to PubMed...
  38. Rackham O. (2008): Ancient woodlands: Modern threats. New Phytologist, 180: 571-586. Go to original source... Go to PubMed...
  39. Rigling A., Bigler C., Eilmann B., Feldmeyer-Christe E., Gimmi U., Ginzler C., Graf U., Mayer P., Vacchiano G., Weber P., Wohlgemuth T., Zweifel R., Dobbertin M. (2013): Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology, 19: 229-240. Go to original source... Go to PubMed...
  40. Ryan M. G. (2011): Tree responses to drought. Tree Physiology, 31: 237-239. Go to original source... Go to PubMed...
  41. Savé R., Castell C., Terradas J. (1999): Gas exchange and water relations. In: Rodà F., Retana J., Gracia C.A., Bellot J. (eds): Ecology of Mediterranean Evergreen Oak Forests. Berlin, Springer-Verlag: 135-147. Go to original source...
  42. Schelhaas M.J., Nabuurs G.J., Hengeveld G., Reyer C., Hanewinkel M., Zimmermann N.E., Cullmann D. (2015): Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Regional Environmental Change, 15: 1581-1594. Go to original source...
  43. Scholander P.F., Hammel H.T., Bradstreet E.D., Hemmingsen E.A. (1965): Sap pressure in vascular plants. Science, 148: 339-346. Go to original source... Go to PubMed...
  44. Stojanović M., Čater M., Pokorný R. (2016): Responses in young Quercus petraea: Coppices and standards under favourable and drought conditions. Dendrobiology, 76: 127-136. Go to original source...
  45. Thomas F., Gausling T. (2000): Morphological and physiological responses of oak seedlings (Quercus petraea and Q. robur) to moderate drought. Annals of Forest Science, 57: 325-333. Go to original source...
  46. Thomas F., Blank R., Hartmann G. (2002): Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology, 32: 277-307. Go to original source...
  47. Van Lanen H.A.J., Laaha G., Kingston D.G., Gauster T., Ionita M., Vidal J.P., Vlnas R., Tallaksen L.M., Stahl K., Hannaford J., Delus C., Fendekova M., Mediero L., Prudhomme C., Rets E., Romanowicz R.J., Gailliez S., Wong W.K., Adler M.J., Blauhut V., Caillouet L., Chelcea S., Frolova N., Gudmundsson L., Hanel M., Haslinger K., Kireeva M., Osuch M., Sauquet E., Stagge J.H., Van Loon A.F. (2016): Hydrology needed to manage droughts: The 2015 European case. Hydrological Processes, 30: 3097-3104. Go to original source...
  48. Vilagrosa A., Hernández E.I., Luis V.C., Cochard H., Pausas J.G. (2014): Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytologist, 201: 1277-1288. Go to original source... Go to PubMed...
  49. Vild O., Roleček J., Hédl R., Kopecký M., Utinek D. (2013): Experimental restoration of coppice-with-standards: Response of understorey vegetation from the conservation perspective. Forest Ecology and Management, 310: 234-241. Go to original source... Go to PubMed...
  50. von Lüpke B. (1998): Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. Forest Ecology and Management, 106: 19-26. Go to original source...
  51. Wellstein C., Poschlod P., Gohlke A., Chelli S., Campetella G., Rosbakh S., Canullo R., Kreyling J., Jentsch A., Beierkuhnlein C. (2017): Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Global Change Biology, 23: 1-9. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.