
Institute of Computer Science
The Czech Academy of Sciences

The IINC System under the ROOT
Environment

Marcel Jǐrina

Technical report No. V-1253

October 2017

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 033 50, fax: +420 286 585 789,
e-mail: marcel@cs.cas.cz

Institute of Computer Science
The Czech Academy of Sciences

The IINC System under the ROOT
Environment

Marcel Jǐrina 1

Technical report No. V-1253

October 2017

Abstract:

In this report we describe the interface of the IINC classification system to other programs in the c++ in
the ROOT environment. The gist of this report forms a detailed description of individual c++ functions
that form the IINC for the ROOT system. A basis of the three methods of the IINC system is explained.
We also discuss the classification ability of the IINC system and influence of the distance function used.
The use of individual methods of the system and selection of a distance function are discussed. An excerpt
from literature devoted to the IINC methods is attached in the Appendix as well as results of some tests
with tasks from the UCI Machine Learning Repository.

Keywords:
IINC; Data separation; Classification; Multivariate data; Distance; Metric

1Institute of Computer Science, The Czech Academy of Sciences, Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech
Republic, E-mail: marcel@cs.cas.cz

UI V-1253 1

Contents

1 Introduction 3

2 IINC methods 3

3 IINC system 5

3.1 IINC for ROOT . 5

3.1.1 FUNCTIONS TO CALL - WITH DATA IN NTUPLE FILES . . 5

3.2 IINC functions . 6

3.2.1 FUNCTIONS TO CALL - HELP FILES 6

3.2.2 FUNCTIONS TO CALL - WITH DATA IN TEXT FILES . . . 6

3.2.3 FUNCTIONS TO CALL - WITH DATA IN double ARRAYS . . 7

3.3 Demo and first steps . 8

3.3.1 CALLING THE IINC SYSTEM 9

4 Discussion 10

5 Conclusion 10

6 Acknowledgment 11

A IINC help 12

A.1 HELP - EXPLANATION OF CONTROL VARIABLES 12

A.2 HELP FOR FUNCTIONS TO CALL - WITH DATA IN double ARRAYS 14

A.2.1 HELP FOR FUNCTIONS TO CALL - WITH DATA IN TEXT

FILES . 14

B IINC methods 16

B.1 Multidimensional data in Rd . 16

B.1.1 Data space. 16

B.1.2 Learning and testing set . 16

B.1.3 Indexing data and neighbors’ distances 17

B.2 IINC system description . 17

B.3 The exponent in a classification method 18

2 UI V-1253

B.4 Three methods . 19

B.4.1 Multifractal Data Classifier . 20

B.4.2 Monofractal Data Classifier . 20

B.4.3 IINC - Inverted Indices of Neighbors Classifier 21

B.5 Generalization . 22

B.6 Metrics in Rd . 22

C Application in classification problems 23

C.1 Results of tests. 24

UI V-1253 3

1. Introduction

The target of this work is to show how the IINC system can be used under the

ROOT environment. The whole problem is to transform ntuples of root into simple

two-dimensional double data arrays and vice versa. For this purpose the IINC system

contains several c++ functions that can be easily called from any c++ program. These

functions are of the following three types.

• There are functions that have names of two-dimensional arrays and more or less

control parameters as formal parameters.

• For the use of these functions under the ROOT environment, there are functions

that provide an interface between ROOT n-tuples and the functions above. The

approach used here is very simple and can be considered as an example. A ROOT

user can construct his own version to conform to his particular needs.

• Other functions use file names instead of names of arrays and read corresponding

text files. We suppose that functions of the first and second type mentioned can

be useful in application in the field of particle physics.

Note 1. In this report we denote the classification system as IINC. It consists of three

methods, one of them we denote ”iinc”, the other two ”Local” and ”Global”.

2. IINC methods

The IINC methods belong among simple classifiers (data separators), eventually

regressors, like the nearest neighbor rules 1-NN and k-NN or the naive Bayes classifier.

IINC methods are distance-based as 1-NN and k-NN. Thus, distance plays a crucial

role and is given by a distance function, mostly metric in the Rd. Another crucial

role is played by the effective dimension of the data space. This is unknown for 1-NN

and k-NN methods. Depending on a particular IINC method, the effective dimension

may be a correlation dimension, a local scaling factor, or an approximation of scaling

behavior of data. Then, there are three IINC methods

• ”Global” method that uses the correlation dimension ν supposing that data are

monofractal, i.e. a fractal nature, scaling, is approximately the same over the

entire data space.

4 UI V-1253

• ”Local” method supposes that data are multifractal, i.e. scaling is different in a

different part of the data space. Local method uses the local scaling exponent.

This exponent is called a distribution mapping exponent, DME. Note that mean

of local DMEs is equal to the correlation dimension.

• ”iinc” method - Inverted Indexes of Neighbors Classifier estimates a probalility

of a class of an event or sample (a query point) according to a proper sum of

reciprocals of indexes of neighbors of this event; the nearest neighbor has index

1, the second nearest has index 2 etc. It can be shown that reciprocals of indexes

model scaling features of data and, at the same time, correct errors caused by

random placement of neighbors close to the query point.

The first two methods must state the correlation dimension or the distribution mapping

exponent before a core procedure is used. So, there exists a learning phase in them.

Note 2. Methods of the IINC system ere reminiscent of the 1-NN and k-NN methods.

But the use of the notion of a distance is all they have in common, compare [2] with

any of [11], [12], [13], [10].

Each of the three methods above has its advantages and disadvantages.

• An advantage of the global method is that the correlation dimension one has to

estimate ones only for a data set, i.e. for a particular problem consisting of several

or many events to be classified. Another advantage is that correlation dimension

can be estimated sufficiently well. A disadvantage lies in the fact that correlation

dimension may differ from the local scaling exponent, the distribution mapping

exponent, and this may be a source of errors. This method uses distances and

its complexity is proportional to the size of the learning set (not considering the

learning phase, i.e. the estimate of the correlation dimension).

• The local method should be (theoretically) most exact among all three methods.

The DME gives the value of scaling on the spot of the query point and leads

to the best estimate of probability of a class to which the query point belongs.

In practice, it is not true. The estimate of the distribution mapping exponent

is made by linear regression or robust regression but the large spread of points

nearest to the query point causes errors in the estimate of the DME and thus

UI V-1253 5

classification errors. This method has complexity also proportional to the size of

the learning set.

• The iinc method uses ranking of points of the learning set according to the

distance from the query point. Ranking brings a similar advantage that ranking

statistic has over standard statistic. Small variations are hidden in the same rank

and eventual large changes influence the rank. An advantage lies in a kind of

robustness of this method that also brings the lowest classification error compared

to the other two methods and also compared to other classification approaches.

The complexity of this method for a large data set is given by N logN , where N

is the size of the learning set.

The behavior of all three methods depends on the distance function, usually a metric

in the Rd. In the IINC system there are 25 different distance functions. Most of them

are metrics in mathematical sense. The other are pseudometrics, i.e. they do not

conform to the triangle unequality. It appears that a rather strange Hassanat metric

is the best. Also an L1 (taxicab or Mannhattan) metric is very good. The Euclidean

metric L2 can be considered acceptable. On the other hand, IINC with a distance

function that generally (let us say on average) is not good enough may still work best

for a particular task.

3. IINC system

The IINC system is written in c++, some parts use the ROOT environment.

The core part forms a program iinc.cpp (iinc.h) containing the very basic (core) function

iincbase().

3.1. IINC for ROOT

xxxxxxxxxxx

ntiinc.h

xxxxxxxxxxx

includes fiinc.h, iinc.h

consists of a function

3.1.1. FUNCTIONS TO CALL - WITH DATA IN NTUPLE FILES

6 UI V-1253

void ntiinc(char* problemheading, char* ntlrnfile, char* ntlrn,

char* nttstfile, char* nttst, char* ntoutfile, char* ntout){

Reads learning and testing data from root ntuple files and writes

output data into an ntuple file.

Parameters: nt files. All other parameters are defaults:

two classes (separator), iinc method, Hassanat metric,

no sample weights.

3.2. IINC functions

xxxxxxxxxxx

iinc.h

xxxxxxxxxxx

consists of functions:

3.2.1. FUNCTIONS TO CALL - HELP FILES

**

void iinchelp()

void iincbasehelp()

Both these functions call void commonhelp().

3.2.2. FUNCTIONS TO CALL - WITH DATA IN TEXT FILES

void iincmain(char SouborSite[], char TestFile[], long FileType, long Vstupu,

double Metric, long Repeat, double DME, long SEL,

long REG, char SWEI[], long sweic,

long Cross, char txt2[], long OUTL, double AdHoc, char argv0[], long RUM) {

The function of the IINC system that reads files and is controlled

by other parameters that must be known at moment of run,

ooo

void iincmain6p(char *SouborSite, char *TestFile,

double Metric, double DME, long SEL, long REG) {

The function of the IINC system that reads files and is controlled

UI V-1253 7

by other four parameters that must be known at moment of run.

In fact, this function calls iincmain function with some parameters constant.

It allows to control the Metric, the iinc method (DME), part selected for

estimation (SEL), and type of regression (REG). There are defaults,

namely two classes (separator) and no sample weights.

ooo

void iincmain2p(char *SouborSite, char *TestFile) {

The function of the IINC system that needs names of files only,

In fact, this function reads files to arrays, then calls iincbase function,

writes *.res file and appends a row to register.res file.

It uses defaults, namely

two classes (separator), iinc method, Hassanat metric,

no sample weights.

ooo

3.2.3. FUNCTIONS TO CALL - WITH DATA IN double ARRAYS

**

long iincbase(double *LearnArr, double *TestArr, double *OutArr, long Dimension,

long classes,long LearnSamples,long TestSamples, long TAResp,

double Metric, long Repeated, double DME, long SEL,

long WEI, double AdHoc, long *Count, double *weit,

long Cross, char *Message, long OUTL) {

The very basic (core) function of the IINC system.

ooo

long iincbase14(double *LearnArr, double *TestArr, double *OutArr,

long Dimension, long LearnSamples,long TestSamples, long TAResp,

double Metric, double DME, long SEL, long REG,

long *Count, double *weit, char *Message) {

The basic function that performs all computations with the number of parameters

reduced to 14.

ooo

long iincbase9(double *LearnArr, double *TestArr, double *OutArr,

long Dimension, long LearnSamples, long TestSamples, long TAResp,

8 UI V-1253

long *Count, double *weit) {

The basic function that performs all computations with the number of parameters

reduced to 9.

oo

3.3. Demo and first steps

The use of the IINC under the ROOT environment means using ROOT

structures. We suppose input data and results in the form of ntuples.

There are two ntuples as inputs, the learning set and testing set or raw data

(without known class). The learning set has form of a set of rows. Each row corresponds

to an event and consists of a constant number of parameters and a class mark, usually

0 or 1. The testing set has the same structure. In case of “raw” data, the class mark

is missing. The output ntuple gives probabilities of belonging to class 0 and to class 1

in the same order as there are events in the testing set.

Here is a simple example how to call function ntiinc(). All that the program does

is reading ntuples from files, calling the IINC and then writing results into an ntuple.

You may find a very different way to do this. You can use any function mentioned

above. In case of problems, contact the author of this report.

xxxxxxxxxxx

ntiinc.h

xxxxxxxxxxx

//A simple example how to use ntiinc data separator

#include "stdio.h"

#include "ntiinc.h"

#include "TNtuple.h"

int main(){//NN

char dest[255], dest1[255], dest2[255], dest3[255], dest4[255], dest5[255], dest6[255];

//preamble: It is supposed that data are in ntuple files.

UI V-1253 9

//If data are in text files you have to get text files into ntuples

txtfileTOntfile (strcpy(dest,"i2lrn7.txt"), strcpy(dest1,"ntuple1.nt"),

strcpy(dest2,"ntlrn1"), strcpy(dest3,"ntMyHeading"),strcpy(dest4,

"f1:f2:f3:f4:class"));

txtfileTOntfile (strcpy(dest,"i2tst7.txt"), strcpy(dest1,"ntuple2.nt"),

strcpy(dest2,"nttst1"),strcpy(dest3,"ntMyHeading"),strcpy(dest4,

"f1:f2:f3:f4:class"));

3.3.1. CALLING THE IINC SYSTEM

// **

ntiinc(strcpy(dest,"MyTaskOne"), strcpy(dest1,"ntuple1.nt"),

strcpy(dest2,"ntlrn1"), strcpy(dest3,"ntuple2.nt"),

strcpy(dest4,"nttst1"), strcpy(dest5,"ntout.nt"), strcpy(dest6,"ntout"));

//Reads learning and testing data fom root ntuple files and writes output

// data into a ntuple file.

//void ntiinc(char* problemheading, char* ntlrnfile, char* ntlrn,

// char* nttstfile, char* nttst, char* ntoutfile, char* ntout){

//problemheading your mame of the problem

//ntlrnfile, ntlrn file and name of the ntuple containing the learning set

//nttstfile, nttst file and name of the ntuple containing the testing set.

// The testing set need not contain a class number (0, 1)

//ntoutfile, ntout file and name of the ntuple containing probabilities

// of class 0 and class 1.

//closing:

//If you wish, you can get ntfile to a text file

ntfileTOtxtfile(strcpy(dest,"ntout.nt"), strcpy(dest1,"ntout"), strcpy(dest2,"iincoutfile"));

//or you can show results on screen using e.g.

ntfileTOscreen(strcpy(dest,"ntout.nt"), strcpy(dest1,"ntout"));

printf("\nReady.\n");

return 0;

}

10 UI V-1253

4. Discussion

It is supposed that the ML system is able to set up its intrinsic parameters

according to examples presented during the learning phase, and then it is able to solve

a task in an optimal way. Usually the learning phase is rather time-consuming. The

IINC system has a tiny learning phase, if any. It relies on an important feature of data,

their effective dimension. This notion says how “dense” are data from a topological

point of view. Note that data in Rd, having the effective dimension equal to the

dimension d, are totally random. They carry no useful information and are also known

as Poisson’s process. Two of the three methods of the IINC system compute and use

the effective dimension. In the third method (“iinc”) the effective dimension is hidden

in the algorithm and need not be computed explicitly.

The IINC is distance-based. Then it depends on the distance function used.

There are 25 different distance functions in the system, mostly metrics. Some of them

are less known and look strange. By this we mean that they do not conform to our

feeling how a geometric object should look like or what features it should have. For

example, we accept that a ball in L1 metric has the form of a “diamond” and in L∞

metric that of a cube with edges parallel with coordinate axes. These “balls” have a

finite volume. But there are metrics where a “ball” has an infinite volume at least for

some finite radii [4]. On the other hand, some of the strange metrics give a very low

classification error in some tasks.

When using a larger set of tasks, one can rank different distance functions as

shown in Table in Fig. 2 (Appendix C). But detailed inspection of this table shows,

on average, that some distance functions that are not by far the best can be the best

for a particular task. Thus, to find the best distance function for a particular set of

similar tasks one should test all distance functions. One may doubt if the best distance

function thus found is really the best. Fortunately, the difference in the classification

error for the best and the second best, eventually the third best, is usually very low.

5. Conclusion

The IINC system is a program for data classification (separation) based on the

notions of local and global scaling exponents known from the theory of fractals. The

UI V-1253 11

purpose of this work is to show how one can use the IINC system under the ROOT

environment. Only one particular approach is shown here. The use of ntuples allows

straightforward calls of several functions that form the IINC system. Of course, one

may find other ways of communication between ROOT and IINC.

In three appendices one can find basic facts from the IINC theory, some results

of tests with various data from the UCI MLR [14], and IINC help in explaining forms

of input data and control variables. Note that default values can be used for all control

variables.

6. Acknowledgment

This work was supported by the Czech Ministry of Education, Youth and Sports

in project No. LG15047 Cooperation on experiments at the Fermi National Laboratory,

USA.

12 UI V-1253

Appendices

Appendices contain an IINC help divided into several parts, and short excerpts from

papers dealing with iinc and results of some tests.

Appendix A. IINC help

This help contains description of all parameters for control of the IINC system.

Most of them are set up to some proven value.

A.1. HELP - EXPLANATION OF CONTROL VARIABLES

DIM: the task dimension (when FileType 2 is used - not here) else it is stated

automatically according to the number of items on the first row

of the LearningFile

DME: selection of the method. Default 0.

if DME=-1 nearest neighbor methods. (Event. weighted: distance divided by

weight.)

The size of the neighborhood is given by parameter SEL.

if DME=0 IINC (1/i) method (no influence of SEL or REG). Ev. weighted.

Good first choice is Metric=-12 (Hassanat), -15 (H2 metric),

-16 (H3 pseudometric), eventually -21 (Pearson) or 1 (L1).

if DME=1 QCregre method that uses an ""additive"" constant not DME

(not weighted).

if DME=11 QCregre method with indexing over the whole learn.set.

if DME=2 DME-local method (SFSloc7 for SEL=0). Uses DME slope

Eventually weighted.

Good first choice is Metric=1, SEL=0 and REG=0.

if DME=3 CDglobal: uses correlation dimension globally. Use AdHoc as the

number of DMEs used for CD estimation; default 100. Ev.weighted

Good first choice is Metric=1, SEL=4 and REG=0.

else default DME=0 is used.

SEL: selection strategy for neighborhood. Default=2.

if SEL<0 use abs(SEL) nearest points.

if SEL=0 use the whole learning set and q=2*q.

if SEL=1 use the whole learning set.

UI V-1253 13

if SEL=2 use one half of samples of the learn.set.

if SEL=3 use first sqrt(No. of samples of the learn.set).

if SEL=4 as SEL=2 starting from 1/3 of that.

if SEL=5 as SEL=3 starting from 1/3 of that.

if SEL>=6 use SEL nearest points.

REG: for DME>0 use a regression as follows.

if REG=0 standard linear regression - default.

if REG=3 Fabian beta-prime weighted linear LMS regression.

if REG=5 Takens CD/DME estimator (computes C too) [with ad hoc coeff. (0.8)].

if REG=6 Fibonacci section method minimizing sagginess in Count=f(r^q)

coordinates.

if REG=7 Huber’s robust regression.

if REG=8 Tucker’s robust regression.

Metric; default: Metric=2.

if Metric: >= 1; Lp metric.

if Metric: = -1; Mahalanobis metric derived from the whole learning set)

if Metric: = -2; Mahalanobis class dependent metric.

if Metric: = -3; Orloci metric.

if Metric: = -4; Angular semimetric.

if Metric: = -5; Clark metric.

if Metric: = -6; Lorentz metric.

if Metric: = -7; Canberra metric.

if Metric: = -8; Bray-Curtis (nearly) metric.

if Metric: = -9; Intersection (nearly) metric.

if Metric: =-10; Cayley-Klein-Hilbert metric.

if Metric: =-11; Weierstrass metric.

if Metric: =-12; Hassanat metric.

if Metric: =-13; Hyperbolic metric.

if Metric: =-14; Elliptics metric.

if Metric: =-15; H2 metric.

if Metric: =-16; Product semimetric (H3).

if Metric: =-17; Polynomial distance semimetric (Ha22).

14 UI V-1253

if Metric: =-21; Pearson (nearly) metric.

if Metric: =-22; Jacknife (nearly) metric.

if Metric: =-23; Goodman-Kruskal (nearly) metric.

if Metric: =-24; Kendall metric.

Repeat: if equal to 1 then do not use normalization; default 0.

Cross: if 1 then supress crossing phenomenon especially for k-NN method;

default 0.

txt2: any text.

OUTL: searching for outliers txt2: any text.

argv0: any text, but preferable the name of the program (argv[0]).

RUM: reduce the learning set to RUM randomly selected samples for each class

(no weights is supposed)

RUM must not be greater then the number of samples of the smallest class.

AdHoc: a constant for fine tuning in some cases. Default 1.

A.2. HELP FOR FUNCTIONS TO CALL - WITH DATA IN double

ARRAYS

For control variables see A.1.

LearnArr: a one-dimensional double array with rows (ie. events) one after

another where

each row contains: variables and Label, i.e. ClassMark (i.e. 1 for signal, 2

for background sample.

No other data is supposed on the line.

Task dimension DIM and the LearningFile size are limited by the size of

alloctable memory only.

TestArr: each row: inputs [Label, i.e. ClassMark]

A.2.1. HELP FOR FUNCTIONS TO CALL - WITH DATA IN TEXT FILES For

control variables see A.1.

LearningFile: each row: inputs ClassMark

No other data is supposed on the line.

Max. 100 classes is supposed.

Task dimension DIM and the LearningFile size are limited by the size of

UI V-1253 15

alloctable memory only.

TestFile: each row: inputs [ClassMark]

Only DIM or DIM+1 items are read from the line.

FileType: a type of NN and Test files. Default=0

=0 Reading lines as numbers including ClassMark.

=1 Reading NoOfInputs numbers and Class string.

=2 Reading pairs (index of word, word count) until (-1 -1) then Class string.

In this case state the dimension using named parameter DIM=...

Named parameters: Form: ParName=Parvalue

SWEI: the name of the file of sample weights, eventually inluding the

path.

if SWEI=1 then the file of sample weights LearningFile.wei is searched.

Default SWEI=0, i.e. no sample weights are present.

Weights should be positive only; else absolute values are used.

The file of weights must have the same number of rows as the learning file

If the file of weights does not have the same number of rows as

the LearninfFile error message appears and program stops.

sweic: the column number in the file of samples weights.

default 1. If the item does not exist the weight is set to 1.

File of results: filename = TestFile.res:

The first row: lrn file name, tst file name, No. of inputs, ValueOfClass1

Other rows each:

Input values (their number according to No. of inputs),

class if given else 0, class found, probabilities of classes, sample No.

Additional text files generated:

register.txt:

One row is appended for each task and consists of task desription,

number of testing samples and no. of errors.

howfar.txt:

16 UI V-1253

Shows percentage of samples already processed.

(good for very large data sets.)

CT.txt:

Task parameters and a contingency table is appended to file CT.txt if it

exists.

A long run of the program can be interrupted without loss of results computed

meanwhile with the use of text file ""ctrl"" with first character ""s"" or

""S"".

Appendix B. IINC methods

B.1. Multidimensional data in Rd

B.1.1. Data space. Let the data set U of total NU = N(U) < ∞ samples be given.

Each sample xt = {xt1, xt2, . . . xtd}; t = 1, 2, ...NU , xtk ∈ R; k = 1, 2, ..., d corresponds

to a point in d-dimensional space Rd, where d is the sample space dimension. For each

xt ∈ U output y ∈ R is introduced.

In the case of a classifiers, output y = c, i.e an output equals to a mark, a class

function T : Rd → 1, 2, ...C : T (xt) = c; c ∈ 1, 2, ..., C With the class function the set U

is decomposed into disjoint classes Uc = {xt ∈ U | T (xt) = c};U = ∪Cc=1Uc, Uc ∩ Ub =

Ø; c, b ∈ 1, 2, ..., C; c 6= b. Let the cardinality of set Uc be Nc;
∑C

c=1Nc = NU .

Usually data are represented as a matrix with d+1 columns and N rows. Each

of columns 1 till d corresponds to a feature, the column No. d+ 1 contains an output

or a class mark. Each row corresponds to one sample, point, pattern, eventually event

that consist of values of d features and an output. Generally, there is no ordering of

rows, i.e. of samples; they follow one after another randomly and are indexed 1, 2,

.. N . Samples are often called points as each sample can be viewed as a point in a

d-dimensional space.

B.1.2. Learning and testing set There is a different terminology used in literature.

Here we speak about the learning set used for setting up the recognition system, and

the testing set (checking set) ”never seen before” for evaluation of true recognition

capability. The learning set can be divided into the training set really used in setting

up the recognizer and validating set for validation of the previous setting cycle. In the

UI V-1253 17

following the validation set will have a different role.

B.1.3. Indexing data and neighbors’ distances As we need to express which sample is

closer or further from some given sample x, we can rank samples of the learning set

according to distance ri of sample xi from sample x. Therefore, let samples of U be

indexed (ranked) so that for any two samples xi, xj ∈ U there is i < j if ri < rj ; i, j =

1, 2, ...N , and output y or class Uc = {xi ∈ U |T (xi) = c}. Of course, ranking depends

on sample x and eventually of a distance function of Rn.

From now on we use numbering of samples according to their order as neighbors

of sample x; xi being the i-th nearest neighbor of sample x.

B.2. IINC system description

A theoretical basis of the IINC classifier is described in [13]. It belongs into

simple distance-based classifiers. For classification into two classes and the same size

of the learning set for both classes, i.e. the same a priori probability it holds

p(c|x) = lim
i→∞

∑
xi∈Uc

1/i

HN
. (1)

where i is the index (rank) of the i-th nearest neighbor xi of point x (without

considering the neighbor’s class) and p(c|x) is the probability that point x belongs

to class c.

In practice and for c classes one uses the following procedure: Let the samples

of the learning set (i.e. all samples irrespective of the class) be sorted according to

their distances from the given point x. Let indexes be assigned to these points so that

1 is assigned to the nearest neighbor, 2 to the second nearest neighbor of the given

point x etc. Nc is the number of samples of class c (cardinality of Uc), c = 1, 2, ...C.

The estimate of the probability that point x belongs to class c is

p̂(c|x) =

1
Nc

∑
xi∈∪c

1/i

C∑
k=1

(1
Nk

∑
xj∈Uk

1/i)

(2)

For total N samples and single given point x the procedure consists of three

steps: Computation of distances; the computational complexity for one distance

is proportional to dimensionality d, of all N distances dN . Sorting distances is

18 UI V-1253

proportional to N logN . Summing up of reciprocals of indexes is proportional to N .

Then the total complexity is a1dN+a2N logN+a3N = N(a1d+a2 logN+a3), where

a1, a2, a3 are implementation dependent constants. For larger learning data sets the

complexity is governed by sorting. It is also seen that the computational complexity

directly depends on the learning set size N and in small extend on dimensionality d.

B.3. The exponent in a classification method

Informally, consider partial influences of individual points to the probability

that point x is of class c. Each point of class c in the neighborhood of point x adds

a little to the probability that point x is of class c, where c = {0, 1} is the class

mark. This influence is the larger the closer to point x the point considered is, and

vice versa. A question arises where do these considerations come from? The answer is

simple: Let us consider a (fixed) query point x. Construct a ball B(x, r) with center

x aV (x, r) = Snr
n. Sn is a constant dependent on space dimensionality n. Let there

be i points in B(x, ri). We are interested in the density of points in the neighborhood

of point x. It is p(x, ri) = i
V (x,ri)

= i
Krni

, where K is a dimension dependent constant.

Considering this density constant (in the sense that we get the same density for different

values of i, i.e. for different radii ri), radii ri would grow proportionally to the n-th

root of i, ri ≈ n
√
i. But as shown in [3], [1] the space can have (locally or globally)

effective dimensionality q lesser than n. Thus, we should compute density of points

using the volume of q-dimensional ball using formula, where Sq is a constant. Taking

one isolated point only in distance ri, i = 1, 2, ..., we get formulae for the first, second,...

point. Individual points are independent; and then we can sum up probabilities above.

Thus, we add the partial influences of k individual points together by summing up

p̂(c|x) =
∑

xi∈Uc

Pr(T (x) = c|T (xi) = c) (3)

Note that the sum goes over indices i for which the corresponding samples of the

learning set are of class c, c = 1, 2, ?C, where C is the number of classes. It can be seen

that any change of distance ri of any point i from point x will influence the probability

that point x is of class c. It can also be considered as a kernel method with kernels

located at all points xi, i = 1, 2, .. in distances ri. We can rewrite (3) in a more suitable

UI V-1253 19

form for practical computation.

p̂(c|x) =

∑
xi∈Uc

1/rqi

N∑
i=1

1/rqi

(4)

The upper sum goes over indices i for which the corresponding samples of the learning

set are of class c. At the same time all N points of the learning set are used as a

normalization term. Moreover, we often do not use the nearest point (i = 1). It can

be found that its influence is more negative than positive on the probability estimate.

It holds [11]

Theorem 1. Let the task of classification into two classes be a given. Let the size

of the learning set be N and let both classes have the same number of samples. Let

q, 1 < q < n be the effective dimension, let i be the index of the i-th nearest neighbor

of point x (without respect to class), and ri > 0 its distance from point x. Then,

p̂(c|x) = lim
N→∞

∑
xi∈Uc

1/rqi

N∑
i=1

1/rqi

(5)

is probability that point x belongs to class c.

Note that the convergence of sums in the formula above is the faster the larger effective

dimension q is. Usually, for multivariate real-life data the DME is also large (and the

correlation dimension as well).

B.4. Three methods

Modifying considerations above, one can find that there are three methods

according to what kind of data we consider and the way we deal with ratio 1/rq.

• If data are multifractal, then variable q differs for different places of data space. In

[9], [13] it is called the distribution mapping exponent and it is a kind of effective

local dimension. In this case it is necessary to compute q for each query point

extra. The apparent advantage is a more exact estimate than in the “global”

approach below that uses, in fact, the mean of all q’s over the whole learning set.

• For monofractal data, there is q = ν; q has a constant value in the data space and

equals to the correlation dimension. The advantage is that we need to compute

20 UI V-1253

correlation dimension ν only once. There are many methods leading to a rather

exact estimate of the correlation dimension.

• IINC (Inverted Indices of Neighbors Classifer) is based on the observation

explained below. The method needs no q or ν estimation, on the other hand, it

uses sorting.

B.4.1. Multifractal Data Classifier This classifier uses the distribution mapping expo-

nent, i.e. a local effective dimension q. Its advantage in more exact estimate of the

distribution mapping exponent q may appear as an disadvantage not only for repeated

computation of q for each query point separately, but also for large error in its estimate.

It is often given by a relatively small amount of data especially in cases of small learning

data set. Fortunately, it can be shown that the method is not too sensitive to exactness

of stating the q. In any case one must check the estimated value of q for cases where q

is too close to data space dimensionality n or even larger than n, or too close to zero.

In these cases it is advisable to use q estimated for another point already computed

and near to the query point or to compute q for several near points, exclude cases

now discussed and take a mean. Many similar approaches can be designed including

estimate of correlation dimension for small subset of the learning set consisting of

points near to the query point.

B.4.2. Monofractal Data Classifier Beside the advantage that we need to compute

correlation dimension ν only once, there are two problems related to it. First, the

correlation dimension estimation can be time-consuming for large learning data sets

because one must compute all N(N − 1)/2 distances between points of all pairs of

points of the learning set. Second, do we know if our data are monofractal? To

answer these questions we show here the sensitivity of classification error to error

in correlation dimension estimation, and the fact that the spread of the distribution

mapping exponent is relatively small. According to [10] we can conclude that data are

generally multifractals as the scaling exponent, DME varies from point to point of the

set. On the other hand, these variations usually lie in a rather narrow band and thus

mean DME, i.e. the correlation dimension ν, may suffice for characterization of the

fractal nature of data.

UI V-1253 21

B.4.3. IINC - Inverted Indices of Neighbors Classifier This is a modification of the

first (multifractal) method above. Based on observation that the distribution mapping

function grows linearly in log(count) - log(distance) coordinates with slope q and

thus linearly in coordinates count vs. (distance)q. So, the index of the neighbor i is

proportional to rqi . Then, 1/rqi ∝ 1/i. From this follows that we can use the neighbor’s

index i instead of its distance to the q-th (or ν-th) power, rqi . Rewriting (4), we get

p̂(c|x) =

∑
xi∈Uc

1/i

N∑
i=1

1/i

(6)

This approach is very simple and very effective; no estimate of the singularity (fractal)

exponent is needed.

Note 3. All three approaches, and especially this last one, are suggestive of kernel

methods but with a rather strange kernel that is neither positive definite, nor finite.

The use of kernels for classification and regression is beyond any discussion; support

vector machines are subject of many papers and books. Here we point out several basic

facts. First, there is a kernel trick that allows computation of (relatively simple) kernel

function instead of search for representing features, computation a nonlinear transform

from samples (pattern) space into feature (kernel) space, and then a scalar product

evaluation. As a basis of the support vector machine, the learning error is minimized

via quadratic programming problem. To get a unique solution, there is a condition of

positively definite Gram matrix, and then kernel should be positively definite. This

is a nearly standard demand. Generally, the kernel need not be necessary positively

definite. Also, the kernel need not be finite. In [25] it is shown nicely that perceptron

is also a kernel machine and sigmoid kernel is nowhere positively definite. In other

words, we want to say that in the context of the method we present here these usually

very basic and prohibitive conditions need not be studied.

In the case of IINC method, there is a close relation to the Zipfian distribution

(Zipf’s law). The simplest case of Zipf’s law is a ”1/f function”. Given a set of Zipfian

distributed frequencies of occurrence of some objects, sorted from the most common

to the least common, the second most common frequency will occur 1/2 as often as

the first. The third most common frequency will occur 1/3 as often as the first, and

22 UI V-1253

so on. Over fairly wide ranges, and to a fairly good approximation, many natural

phenomena obey Zipf’s law. Note that in the case of a ”1/f function”, N must be

finite and its denominator is equal to HN , the so-called harmonic number, i.e. the sum

of truncated harmonic series; otherwise the denominator is a sum of harmonic series,

which is divergent.

Note 4. Nearly the same formula as (6) can be used for regression tasks as follows

ŷ =

N∑
j=1

yj

rank(xj)

N∑
j=1

1
rank(xj)

(7)

(In words, we compute reciprocals of the rank of the distance of point x to all

points xj ; the smallest distance corresponds to rank one. Then we multiply them by

corresponding outputs in the numerator. In the denominator is sum of the reciprocals

only.)

In a similar way one can modify (4).

B.5. Generalization

Formulas (4), and (6) need some generalization since there are several classes C

and a different number of samples Nc, c = 1, 2, ..., C of each class in the learning set.

General formulas are as follows:

p̂(c|x) =
1

Nc

∑
xi∈Uc

1/rqi

C∑
k=1

(
1
Nk

∑
xi∈Uk

1/rqi

) (8)

(Eventually q = ν),

p̂(c|x) =
1

Nc

∑
xi∈Uc

1/i

C∑
k=1

(
1
Nk

∑
xi∈Uk

1/i

) . (9)

We can see the introduction of relative representation of different numbers of samples

Nc of each class, i.e. introducing a priori probabilities.

B.6. Metrics in Rd

A natural metric in Rd is Euclidean metric and (Rd, ρE) is a metric space. At

the same time one uses another metric ρx. This metric we use for stating distances

UI V-1253 23

between points in Rd.

The IINC system comprises about 25 different metrics and distance functions.

All distance functions that are not metrics are pseudometrics, i.e the triangle unequality

can be violated in some cases.

In [5] it was shown that the iinc classifier with the Hassanat metric gives the best

performance among all other distance functions used there. In concordance with this

we found that other good metrics are “h2” - simplified Hassanat metric, L1 (taxicab

or Manhattan) metric, Pearson, Orloci, angular metrics. The Euclidean metric L2 was

found the seventh best from 24 distance functions tested.

Note 5. The metric according to Hassamat [4] is a rather strange metric defined as

follows. Let Mi = max(xi, yi) and mi = min(xi, yi). The metric is given by formula

ρH =
1

d

d∑
j=1

di (10)

where

di = 1− 1 +mi

1 +Mi

for mi >= 0, and

di = 1− 1 +mi + |mi|
1 +Mi + |mi|

that is also

di = 1− 1

1 +Mi + |mi|
for mi < 0.

It has been proved [4] that it is really metric on Rd and thus (Rd, ρH) is a metric

space.

In (10) according to [4] is a sum, not an average, but from context it is apparent

that this is an misprint in the paper.

Appendix C. Application in classification problems

Fifteen databases have been used for the classification task into two to 10 classes.

The number of attributes not including the class mark differs from 4 to 180. Data

originally from the UCI Machine learning repository were gained mostly from [17]

(denoted by P in column Source in the Table). These data sets are ready for run with

24 UI V-1253

a classifier. Each task consists of 50 pairs of training and testing sets corresponding

to 50-fold cross validation. For DNA data a single partition into training and testing

sets according to specification in the UCI MLR was used. We also added the popular

Iris data set. We use them without Setoza class, i.e. with two classes Versicolor

and Virginica only, and the remaining data were split into 10 pairs for ten-fold cross

validation.

C.1. Results of tests.

Summary of measurements is shown in the Table in Fig. 2. Rows in the table

shows results for individual tasks, the last line gives the mean. Sixteen columns give

classification errors for all tasks for sixteen distance functions, mostly metrics, with

the IINC classifier. We selected all metrics that give error at most by 50 % worse

that the best one. Thus Clark, Goodman-Kruskal, Kendall, Bray-Curtis, hyperbolic,

intersection, Cayley-Klein-Hilbert, amd jacknife distance functions available in the iinc

were excluded from further consideration. Columns of the table are ranked according

to the mean classsification error, the best leftmost. The last column gives classification

errors for the SVM (support vector machine), implementation by T. Joachims [8], [7].

Data for other classifiers, 1-NN and k-NN type with or without learning one can find

e.g. in [18], [5].

Inspecting table in Fig. 2, especially the first and the last rows, one can see

that

• No distance function is the best for each task.

• Considering all 25 distance functions available in the iinc the mean of smallest

errors for each of 24 tasks according to Table in Fig. 1 is 12.32% and the mean

of smallest errors for each of five best distance functions (see Table in Fig. 2) is

13.92%. At the same time there are 10 tasks from 24 for which one of the best

five distance functions is also the best of all 25 distance functions available.

• Generally the best is the Hassanat metric. It is then set as a default metric.

From five best distance functions the Hassanat metric is the best for 7 tasks.

Next four distance functions (h2, L1, Ha22, Pearson) are best in other 3, 5, 5,

and 4 tasks, respectively.

UI V-1253 25

Figure 1: Table of basic characteristics of tasks from UCI Machine Learning Repository

modified by sources cited. Abbreviations for sources: P - [17]; P2 - [16]; UCI MLR - [14].

Note (1): Iris data are used without Setoza class, i.e. two classes Versicolor and Virginica

only.

26 UI V-1253

Figure 2: Table of classification errors of the IINC classifier with 16 metrics for 24 tasks.

The last column shows results obtained using SVM with best kernel for each task.

UI V-1253 27

• The L1 (taxicab or Manhattan metric) is the second most popular metric.

Fortunately, it appears to be by 1.87 % worse than Hassanat metric.

• The L2 - Euclidean metric gives mean classification error by 5.27 % worse than

the Hassanat metric and by 3.46 % worse than L1 metric. So, if you prefer a

“common” over “unusual” (metric), then you can use L1 metric with success.

References

[1] Camastra,P., Vinciarelli,A. (2001), Intrinsic Dimension Estimation of Data:

An Approach based on Grassberger-Procaccia?s Algorithm. Neural Processing

Letters Vol. 14, No. 1, pp. 27-34.

[2] Cover, T. M., Hart, P. E. (1967), Nearest Neighbor Pattern Classification.

IEEE Transactions on Information Theory, Vol. IT-13, No. 1, pp. 21-27.41

[3] Grassberger, P., Procaccia, I. (1983), Measuring the strangeness of strange

attractors, Physica, Vol. 9D, pp. 189-208.

[4] Hassanat, A.B. (2014), Dimensionality Invariant Similarity Measure. Journal of

American Science, Vol. 10, No. 8, pp. 221-226.

[5] Hassanat, A.B.. Abbadi, M.A., Altarawneh, G.A., Alhasanat, A.A.

(2014), Solving problem of K parameter in the KNN classifier using an ensemle

learning approach. Internationa Journal of Computer Science and Information

Security (IJCSIS), Vol. 12, No. 8, pp. 33-39.

[6] Hornik, K. (1991), Approximation capa bilities pof multilayer feedforward

network. Neural Networks, Vol. 4, pp. 251-257.

[7] Joachims, T. (1999), Making Large-Scale SVM Learning Practical. In: Advances

in Kernel Methods - Support Vector Learning, eds. B. Scholkopf, C. Burges and A.

Smola, MIT-Press.

[8] Joachims, T. (2008), Program Codes for SVM-Light and SVM-Multiclass.

Available at http:svmlight.joachims.org/ .

28 UI V-1253

[9] Ji?ina, Marcel (2003), Classification of Multivariate Data Using Distribution

Mapping Exponent. Proceedings of the International Conference in Memoriam John

von Neumann Budapest : Budapest Muszaki Foiskola (Budapest Polytechnic), 2003

- (Szakl, A.), s. 155-168 ISBN 963-7154-21-3. [International Conference in Memorial

John von Neumann. Budapest (HU), 12.12.2003]

[10] Jiřina, M. and Jiřina, Jr., M. (2013) Fractal Based Data Separation in

Data Mining. Proceedings of the The Third International Conference on Digital

Information Processing and Communications Hong Kong : SDIWC, 2013, pp.

287-295. ISBN 978-0-9853483-3-5. [ICDIPC 2013 - International Conference on

Digital Information Processing and Communications /3./. Dubai (AE), 30.01.2013-

01.02.2013]

[11] Jiřina, M. and Jiřina, Jr., M. (2013), Utilization of Singularity Exponent in

Nearest Neighbor Based Classifier. Journal of Classification (Springer), Vol. 30,

No. 1, pp. 3-29. ISSN 0176-4268.

[12] Jiřina, M. and Jiřina, Jr., M. (2014), Correlation Dimension Based Classifier.

IEEE Transactions on Cybernetics, Vol. 44, pp. 2253-2263. ISSN 2168-2267.

[13] Jiřina, M. and Jiřina, Jr., M. (2015), Classification Using Zipfian Kernel.

Journal of Classification (Springer), Vol. 32, No. 2, pp. 305-326. ISSN 0176-4268.

[14] Lichman, M. (2013), UCI Machine Learning Repository. Irvine, CA: Uni-

versity of California, School of Information and Computer Science. on-

line,http:archive.ics.uci.edu/ml

[15] Oneto, L., Ridella, S., Anguita, D.(2016), Tikhonov, Ivasnov and Morozov

regularization for support vector machine learning. Machine Lerning (Springer),

Vol. 2016, pp. 103-136.

[16] Paredes, R. (2008), CPW: Class and Prototype Weights learning. [online],

Available: http:www.dsic.upv.es/ rparedes/research/CPW/index.html.

[17] Paredes. R. (2010), Data sets corpora. [online], Available: http:algoval.essex.

ac.uk/data/vector/UCI/, in fact, the primary source is S. M. Lucas, Algoval:

Algorithm Evaluation over the Web.

UI V-1253 29

[18] Paredes, R., Vidal, E. (2006), Learning Weighted Metrics to Minimize Nearest

Neighbor Classification Error. IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 20, No. 7, pp. 1100-1110, (July 2006).

