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Abstract. In this paper we introduce a new approach that utilizes the correlation dimension (CD) both for 
probability density estimate of data and consequently for classification. It will be shown that just a classifier 
utilizing CD exhibits significantly better behavior (classification accuracy) then other kinds of classifiers. 
Correlation dimension is used for complexity estimation of fractals or any other data generating processes. Basic 
idea was introduced in the well known paper by Grassberger and Procaccia and there are papers dealing with the 
correlation dimension estimation. Some experiments that use the correlation dimension for classification has 
been published too. 
The idea of correlation dimension classifier directly follows the principle of classifier, which uses the 
distribution mapping exponent (DME). The basic difference between these two approaches is that DME is a 
local feature depending on the position of the query point and on the number of points of the learning set while 
CD is not. It is shown that CD-based classifier outperforms DME classifier and many classifiers published on 
Machine Learning Repository pages. 
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1 Introduction 
The correlation dimension [4], [7] is a feature of the fractal or the data generating process and 
thus more accurately expresses the nature of fractals or processes which generate data we 
wish to separate. The basic idea was introduced by Grassberger and Procaccia [7]. There are 
many papers that utilize the correlation dimension estimation in different tasks, [2], [4], [6]. 
Also application of the correlation dimension for classification has been published, e.g. in [3]. 

The correlation dimension is impossible to calculate in an analytically closed form and 
therefore there are many sophisticated methods that estimate the correlation dimension. The 
basic approach is, of course, given in Grassberger-Procaccia paper [7]. In [11] a variant of this 
method is presented and it is also mentioned an estimation by L.A. Smith (1988) that for the 
estimation of fractal – correlation dimension � to be accurate within 5 %, the cardinality of the 
data set should be 42� . They have also shown that correlation dimension estimated by the use 
of Grassberger-Procaccia's algorithm grows systematically with number of random points of 
ten-dimensional data set and approaches to 10 for very large data set. One of most cited is 
Taken's estimator [1], [2]. Another estimation of correlation dimension is given in [6], where 
the estimation should compensate the edge (boundary) effects biasing the estimation of 
correlation dimension. 

In this paper we innovatively deal with direct application of the correlation dimension for 
probability density estimate and consecutively for classification. The idea of correlation 
dimension (CD) classifier directly follows the principle of classifier, which uses the 
distribution mapping exponent (DME) [8], [9], [10] derived from the k-nearest neighbor 
method [5], [12]. The basic difference is that DME is a local feature depending on the 
position of the query point and on the number of points of the learning set. Here we suggest a 
correlation dimension-based classifier that utilizes a new heuristic procedure for the 
correlation dimension estimation. It will be shown that for some data sets CD-based classifier 
outperforms DME classifier and many other classifiers. 

2 Probability distribution mapping function 
Here two important notions, the probability distribution mapping function and the distribution 
density mapping function are introduced [8], [9]. To understand these terms we give a brief 
example that demonstrates them.  

Let us have an example of a ball in an n-dimensional space containing points distributed over 
its volume. Let us divide the ball on concentric "peels" of the same volume.  

A mapping between the mean density in an i-th peel �i and its radius ri is �i = p(ri), where 
p(ri) is the mean probability density in the i-th ball peel with radius ri. The probability 
distribution of points in the neighborhood of a query point x is thus simplified to a function of 
a scalar variable. We call this function a probability distribution mapping function D(x, r) and 
its partial derivation according to r the distribution density mapping function d(x, r). 
Functions D(x, r) and d(x, r) for x fixed are one-dimensional analogs to the probability 
distribution function and the probability density function, respectively [8], [9]. 

A need of the distribution that is uniform in the vicinity of the query point for the best 
probability density estimation is formulated in [8], [9]. To achieve it a parabolic function in 
the form D(x, r) = const.rq that both reduces dimensionality from En to E1 and makes the 
picture of distribution more uniform was introduced. It is called a power approximation of the 
probability distribution mapping function D(x, r). This approximating function is tangent to 
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the horizontal axis in the origin and let it be going through some characteristic points of the 
distribution. The exponent q is a distribution-mapping exponent.  

Using this approximation of the probability distribution mapping function D(x, r) we, in fact, 
linearize this function as a function of variable z = rq in neighborhood of origin, i.e. in the 
neighborhood of the query point. The distribution density mapping function d(x, r) as function 
of variable z = rq is approximately constant in vicinity of the query point. This constant 
includes true distribution of probability density of points as well as influence of boundary 
effect.  

Important finding is that the distribution-mapping exponent reminds the Grassberger-
Procaccia’s correlation dimension [7]. There are three essential differences. First, the 
distribution-mapping exponent is a local feature of the data set because it depends on a 
position of the query point, whereas the correlation dimension is a feature of the whole data 
space. Second, the distribution mapping exponent is related to data only. Third, the 
distribution mapping exponent is influenced by boundary effect. 

3 Correlation dimension 
The correlation dimension was introduced in [7] as a characteristic measure of strange 
attractors, which allows distinguishing between deterministic chaos and random noise [11].  

Authors of [11] consider the set {Xi, i = 1, 2, .. N} of points of the attractor, obtained e.g. from 
time series with fixed time increment. Most pairs (Xi, Xj) with i � j are dynamically 
uncorrelated pairs of essentially random points [7]. The points lie however on the attractor. 
Therefore they will be spatially correlated. This spatial correlation is measured by correlation 
integral C(r) defined according to  
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In more comprehensive form one can write 
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In [7] it is shown that for small r the C(r) grows like a power νrrC ~)(  and that "correlation 
exponent" � can be taken as a most useful measure of the local structure of strange attractor. 
The authors also mention that correlation exponent (dimension) � seems to be more relevant 
in this respect than Hausdorff dimension Dh of the attractor. In general there is � � � � Dh , 
where � is the information dimension, and it can be found that this inequalities are rather tight 
in most cases, but not all. Given an experimental signal and � < n (degree of freedom or 
dimensionality or so-called embedding dimension) then we can conclude that the signal 
originates from deterministic chaos rather than random noise, since random noise will always 
result in nrrC ~)( . 

The correlation integral can be rewritten in form [11] 
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There are methods for estimation of correlation dimension �, but the problem is that they are 
either too specialized for one kind of equation or they use some kind of heuristics that usually 
optimize the size of radius r to get the proper value of the correlation dimension. One of most 
cited is Taken's estimator [2], [1].  

Averaging method for correlation dimension estimation A significant result of this paper 
that we show in this section is that the correlation integral is the mean of the distribution 
mapping functions and that the correlation dimension can be approximated by the mean of 
distribution mapping exponents as shown in the theorem below.. 

Theorem 
Let there be a learning set of mT points (samples). Let empirical correlation integral, i.e. 
empirical probability distribution of pair-wise distances lij of points from the learning set, be 
C(lij) and let D(i, rik), where rik is the distance of k-th neighbor from point i, be the empirical 
distribution mapping function corresponding to point i. Then C(lij) is a mean value of D(i, rik): 
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Let h(x) be Heaviside step function. Then  
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Let for each i rik = lij. The rik, k=1, 2,...mT-1 can be ordered so that ri1 <= ri2 <=...<= ri(mT-1) . 
Thus rik is the distance from point i to its k-th nearest neighbor. Then  
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Comparing (2) and (3) we get directly (1). � 
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mean of distribution mapping exponents qi:  
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The square root rule. One very often used heuristics is to use the square root of the number 
of all points, i.e. all data points. For example, it is a good rule in nearest-neighbors based 
methods. This is also rather good rule for estimating distribution mapping exponent q. For 
correlation dimension one should take shortest distances and their number should be the 

square root of all pairs. From it the number of pairs used is 
22

)1( TTT mmm
≈

−
. Even if this 

rule is used, the value of correlation dimension as well as the distribution mapping exponent 
is usually underestimated when the linear regression is used.  
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The hyperbolic approximation. We come from the observation that in the log-log graph of 
the correlation integral or of the distribution mapping function it can be seen that it looks like 
the curve which approaches to some asymptote for small distances., see Fig. 1. Let us suppose 
that such an asymptote exists and by its direction the correlation dimension or DME are 
given. 
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Fig. 1. Asymptote to the DMF or correlation integral. 

 

Let the asymptote be given by rqkp lnln += . Each point on the curve in Fig. 1 has the 
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This is a linear equation of three unknown variables, namely k/q, 1/q, and a. The regression 
equation is 
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(All sums go from i = 1 to some number equal to or less than mT according to another 
heuristics used; we use the square root of mT.) We are interested in 1/q only and it is possible 
to get not too complex formulas for computation.  

4 Probability Density Estimation 
The main goal of this paper is to find a classifier that would exhibit better features then other 
ones. The better estimation of the probability distribution of the data the better classifier. In 
this section we come from assumption that the best estimation of the probability distribution 
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of the data is closely related to uniformity of the space around the query point x. This 
uniformity is reached by the use of expanded distances, i.e. by the use of rν instead of r. 

Let U be a learning set composed of points (patterns, samples) xi, where i is the index of point 
without respect to class c = {0, 1} to which it belongs; xi is the i-th nearest neighbor of point 
x. By symbol i(c) we denote those indexes i that point xi(c) belongs to class c. 

In the k-NN method the resulting estimation of probability is dependent on the number of 
points k inside the ball of radius rk. It doesn’t matter how the points inside the ball are 
distributed. Points can be concentrated in the center or spread to the surface of the ball, the 
result is the same. Let us consider partial influences of individual points to the probability that 
point x is of class c. Each point of class c in the neighborhood of point x adds a little to the 
probability that point x is of class c, where c = {0, 1} is the class mark. This influence is the 
larger the closer the point considered is to point x and vice versa.  

For the first (nearest) point i = 1                    
n
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for the second point i = 2                             
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and so on, generally for point No. i               
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Here Sn is constant dependent on dimensionality n and metrics used. 

Then partial influences of individual points we add together by summing up 
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(The sum goes over indexes i for which the corresponding samples of the learning set are of 
class c.) It can be seen that any change of distance ri of any point i from point x will influence 
the probability that point x is of class c.  

Let us compare this formula with formula for the k-NN method n
kn

c
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i
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Here ic denotes the number of points of class c from k nearest points to point x. In practical 

computation there is usually k
icNNkcxp =− ),|( .  

In similar way we can rewrite Eq. (4) in more suitable form for practical computation.  
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(The upper sum goes over indexes i for which the corresponding samples of the learning set 
are of class c.)  

At the same time all mT points of the learning set are used instead of some number k. 
Moreover we do not use the nearest point (i = 1). It can be found that its influence is more 
negative than positive on the probability estimate. 
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General case. Using the correlation dimension � we, in fact, use true dimensionality of the 
data space so that variable r� has the uniform distribution (at least in the vicinity of the query 
point x). In the same way as in (12) we estimate the distribution density in point x by  
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Again, if the sum of series ν
ir1 converges with the size of ri, we can use all points in the 

learning set excluding the nearest neighbor.  

Classifier Construction 
In this section we show how to construct a classifier that incorporates the idea of correlation 
dimension (including approaches mentioned). First, we compute the correlation dimension � 
as a mean of distribution mapping exponents qi of 100 randomly selected points of the 
learning set. Individual qi are computed using square root rule and hyperbolic approximation. 
Then we simply sum up all components ν

ir1  excluding the nearest point because its 
influence is most unreliable. This is made for both classes simultaneously getting numbers S0 
and S1 for both classes. Then we can get the Bayes ratio or a probability estimation that the 
point x ∈ En belongs to class 1 from equations 
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Then for a threshold (cut) θ chosen, if θ>)(xR  or θ>)(1 xp  then x belongs to class 1 else to 
class 0.  

5 Results - testing classification ability 
The algorithm for classification to two classes based on the correlation dimension was written 
in C++ . The classification ability of this program was tested using four real-life tasks from 
UCI Machine Learning Repository [13]. Four databases, namely "Adult", "German", "Heart", 
and "Ionosphere" have been used for the classification task into two classes.  

We do not describe these tasks in detail here as all can be found in [13]. For each task the 
same approach to testing and evaluation was used as described in [13]. In Table 1 results are 
shown together with results for other methods as given in [13]. For each task methods are 
sorted according to the classification error, the method with the best behavior – the smallest 
error – first.  
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Table 1. Comparison of the classification error of the program (CD) which implements the 
method described here for different tasks with results of other classifiers as given in [13]. 

 

 "German" "Heart" "Adult" "Ionosphere" 
Algorithm Error Algorithm Error Algorithm Error Algorithm Error 

CD 0.261 CD 0.16 FSS Naive Bayes 0.1405 IB3  0.0330 

Discrim 0.535 Bayes  0.374 NBTree  0.1410 backprop  0.0400 

LogDisc 
0.0600 0.538 Discrim  0.393 C4.5-auto  0.1446 Ross Quinlan's C4 0.0600 

Castle 0.583 LogDisc  0.396 
IDTM (Decision 
table) 0.1446 CD 0.0667 

Alloc80 0.584 Alloc80 0.407 HOODG  0.1482 nearest neighbor  0.0790 

Dipol92 0.599 QuaDisc  0.422 C4.5 rules 0.1494 
"non-linear" 
perceptron 0.0800 

Smart 0.601 Castle  0.441 OC1 0.1504 
"linear" 
perceptron  0.0930 

Cal 0.603 Cal5  0.444 C4.5 0.1554   

Cart 0.613 Cart  0.452 Voted ID3 (0.6)  0.1564   

QuaDisc 0.619 Cascade  0.467 CN2  0.1600   

KNN 0.694 KNN  0.478 Naive-Bayes 0.1612   

Default 0.700 Smart  0.478 Voted ID3 (0.8)  0.1647   

Bayes 0.703 Dipol92 0.507 T2  0.1684   

IndCart 0.761 Itrule 0.515 CD 0.1781   

Back Prop 0.772 Bay Tree 0.526 1R  0.1954   

BayTree 0.778 Default 0.560 
Nearest-neighbor 
(4)  0.2035   

Cn2 0.856 BackProp  0.574 
Nearest-neighbor 
(2)  0.2142   
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6 Conclusion 
An innovative new method for classification based on the notion of the correlation dimension 
and its estimate was suggested. Features of the correlation dimension can be easily and 
properly utilized for a classification task. The correlation dimension cannot be expressed in an 
analytical form but must be estimated. There are several methods that estimate it, for example 
the well-known Takens estimator. However, this method has some negative features, mainly 
underestimates the correlation dimension. Therefore, we introduced here the hyperbolic 
approximation that behaves better. 

It is evident that the better estimation of probability distribution of data is at hand the better 
classification can be achieved. It has been found that a uniform distribution of data implies 
better results as well. Therefore we used nonlinearly transformed data to achieve it. By using 
a notion of distance, i.e. a simple transformation En � E1, the problems with dimensionality 
are easily eliminated at a loss of information on the true distribution of points in the 
neighborhood of the query point. The assumption of at least local uniformity in the 
neighborhood of a query point is fulfilled by the use of simple polynomial expansion where 
the exponent is equal to the correlation dimension.  

The classification method has no tuning parameters and there is no true learning phase. In the 
"learning phase" normalization constants and an estimate of the correlation dimension are 
computed. It seems that it can outperform much sophisticated classification algorithms in 
some cases. 
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