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Abstract 
Correlation dimension, singularity exponents, also scaling exponents are widely used in 
multifractal chaotic series analysis. Correlation dimension and other measures of effective 
dimensionality are used for characterization of data in applications. A direct use of correlation 
dimension to multidimensional data classification has not been hitherto presented. There are 
observations that the correlation integral is a distribution function of distances between all 
pairs of data points, and that by using polynomial expansion of distance with exponent equal 
to the correlation dimension this distribution is transformed into locally uniform. The 
classifier is based on consideration that the “influence” of neighbor points of some class on 
the probability that the query point belongs to this class is inversely proportional to its 
distance to the correlation dimension - power. New classification approach is based on 
summing up all these influences for each class. We prove that a resulting formula gives an 
estimate of probability of class – not a measure of membership to a class only – to which the 
query point belongs. For this assertion to be valid it is necessary that exponent of the 
polynomial transformation must be the correlation dimension. We also propose an “averaging 
approach” that speeds up computation of the correlation dimension especially for large data 
sets. It is demonstrated that the correlation dimension based classifier can outperform more 
sophisticated classifiers. 
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1 Introduction 
Correlation dimension introduced by Grassberger and Procaccia [1] is a means for  
characterizing the nature of fractals. The correlation dimension (CD) can be used for the 
characterization of very general data sets usually described by some stochastic characteristics. 

Each point of multivariate data including fractals can be mathematically described by a vector 
or point in the so-called embedding space of some dimension. Neither data nor fractal   fill the 
multivariate space fully, and the measure of this ”filling“ is measured by effective 
dimensionality of the given data set or fractal especially by correlation dimension that is 
derived from correlation integral. It is a common license to say that a data set is a fractal. In 
fact, a finite or countable data set cannot be fractal; fractal is – or can be – a measure on it. A 
measure considered here is a distance because the correlation dimension is defined as a 
function of distances between points of the data set. Singularity exponents, also scaling 
exponents are widely used in multifractal chaotic series analysis. In applications it can be 
found that effective dimensionality, scaling exponents, and correlation dimension are used for 
characterization of data in different ways before a classification procedure is employed.  

However, a direct application of correlation dimension to the approximation of probability of 
class at a given point and for classification [4], [5], [6], [10] has not been presented up to now.  

Here we show that the correlation dimension can be useful for this approximation and for the 
construction of a new classifier. The correlation dimension characterizes the correlation 
integral and the correlation integral is, in fact, a distribution function of distances between all 
pairs of data points. Thus, the approach presented here is closely related to the nearest 
neighbor-based methods [4], [9]. For design of a new classifier we use or necessarily redefine 
some notions from the multifractals theory. We found that the correlation integral can be 
decomposed to a set of newly defined probability distribution mapping functions. The 
probability distribution mapping function maps the distribution of points in the neighborhood 
of fixed point with respect to distance from that point. Moreover the distribution-mapping 
function can be approximated by simple polynomial function of distance r in the same way as 
correlation integral (CI(r) = Crν with correlation dimension ν), i.e. in the form Crq, where q is 
a distribution-mapping exponent and C is a constant. We show that distribution-mapping 
exponent q is very close to the correlation dimension, and that the correlation dimension is 
equal to mean distribution-mapping exponent. We consider here that the “influence” of 
neighbor points of some class on the probability that the query point belongs to this class is 
inversely proportional to rν. Thus, weighting these influences we design a classification 
approach based on summing up all these influences for each class. At this point, the method 
reminds a kernel method with a rather strange kernel that has a singularity in its center and is 
not fulfilling condition to have a finite integral. The sums are corrected by class priors in 
cases of different numbers of points of different classes. We prove that a resulting formula 
gives an estimate of probability of class to which the query point belongs. It is an interesting 
difference to other classifiers where output variable is a measure of membership to a class, but 
not a probability. An important fact for the assertion to be valid is that exponent ν must be the 
correlation dimension.   

A related problem is an effective method for correlation dimension estimation.  Unlike other 
needs of correlation dimension estimation oriented to exactness of the estimate, we need a fast 
approach. For correlation dimension estimation we used the Grassberger-Procaccia approach 
[1] and Takens’ estimator [7] together with an “averaging approach” proposed here that 
speeds up computation especially for large data sets. We found that when the correlation 
integral is decomposed to a set of probability distribution mapping functions in the form Crq 
the correlation dimension can be estimated by mean distribution mapping exponent q. 
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We tested the new classifier on various real-life multivariate data sets. Our results 
demonstrate that the polynomial projection with correlation dimension as an exponent can 
convert a complex multivariate data distribution into a more tractable form.  

Our results show that the decomposition of correlation integral to local functions, which are 
approximated by simple polynomial, can be used for approximation of the probability of class 
at a given point and thus can be used for constructing a new type of classifier, which can, for 
some data, outperform some more complex classifiers. 

This study can lead to a more detailed analysis of the relation between fractal dimension and 
probability density, and also for the development of new approaches to data analysis 
including classification problems. 

 Next Chap. 2 describes the data space transformation that forms the basis of the method 
proposed and describes the new classifier. The transformation is parameterized by correlation 
dimension as shown above. Therefore, Chap. 3 deals with this particular detail, i.e. correlation 
dimension estimation, and can be considered as a “step aside”. It can be omitted in the first 
reading supposing that there are some ways in which the correlation dimension can be 
estimated. Description of some tests and discussion conclude the paper. 

 

2 Probability of Class and Correlation Dimension 
The main goal of this paper is to show that the approximation of probability of class at a given 
point can be expressed as a particular dependence on the correlation dimension. In this 
section, we proceed from the assumption that the best approximation of the probability 
distribution of the data is closely related to the uniformity of the space around the query point 
x. This uniformity is reached by the use of expanded distances, i.e. by the use of rν instead of 
distance r; ν is the correlation dimension. First, we point out the notion of correlation 
dimension and introduce the transformation mentioned. 

CORRELATION DIMENSION 
The correlation dimension was introduced in [1] as a characteristic measure of strange 
attractors, which allows distinguishing between deterministic chaos and random noise. The 
authors of [8] consider the set {Xi, i = 1, 2, .. N} of points of the attractor. Most pairs (Xi, Xj) 
with i � j are dynamically uncorrelated pairs of essentially random points [1]. The points lie, 
however, on the attractor. Therefore, they will be spatially correlated. This spatial correlation 
is measured by correlation integral CI(r), where r has the meaning of a distance, defined 
according to  

}:),({
1

lim)( 2 rXXjipairsofnumber
N

rC jiNI <−×= →∞ .                            (1) 

In a more comprehensive form one can write 

)Pr()( rXXrC jiI <−= .                                                       (2) 

In [1] it is shown that for small r the CI (r) grows like a power νrrCI ~)(  and that "correlation 
exponent" � can be taken as a most useful measure of the local structure of strange attractor. 
The authors also mention that correlation exponent (dimension) � seems to be more relevant 
in this respect than the Hausdorff dimension [3] Dh of the attractor. In general, there is 
� � � � Dh , where � is the information dimension, and it can be found that these inequalities 
are rather tight in most cases, but not in all. Given an experimental signal and � < n (degree of 
freedom or dimensionality or so-called embedding dimension), we can conclude that the 



5 

signal originates from deterministic chaos rather than random noise, since random noise will 
always result in n

I rrC ~)( . 

The correlation integral (1) or (2) can be rewritten in the form [8] 

)(
)1(

1
lim)(

1
�

≤<≤
∞→ −−

−
=

Nji
ijNI XXrh

NN
rC ,                                       (3) 

where h(.) is Heaviside step function equal to one for positive argument and equal to zero 
otherwise. From it 

r
rC I

r ln
)(ln

lim ∞→=ν .                                                                (4) 

DATA SPACE TRANSFORMATION 
There are known facts and some simple considerations as follows. 

• The correlation integral is a distribution function of distances between all pairs of data 
points. 

• Grassberger and Procaccia [1] have shown that correlation integral grows like a power 
νrrCI ~)(  . 

• When a new variable z = rν is introduced, the correlation integral is transformed to the 
distribution function of random variable z.  

• This distribution function of random variable z grows linearly (for small values of z). 

• Its derivative according to z is the distribution density function of random variable z. This 
distribution density function is constant (for small values of z). 

• Then the probability distribution of random variable z is uniform (for small values of z). 

Thus, a complex multivariate distribution of points in n-dimensional space is transformed to a 
uniform (for small values of z) distribution of a scalar variable. We use this fact when 
designing a new method of approximation of probability of class at a given point and in proof 
of Theorem 1. One could even say that in the following we “measure” the distance by rν.  

When using a notion of distance, we, in fact, use a simple transformation from n-dimensional 
to one-dimensional space. By the use of any measure of distance (instead of all coordinates in 
n-dimensional space), the problems with dimensionality are eliminated at the loss of 
information on the true distribution of points in the neighborhood of the query point.  

THE METHOD 
Let the learning set U of total N samples (points, patterns) be given. Each sample xt={xt1, 
xt2,… xtn}; t = 1, 2, ... N , xtk ∈ R ; k = 1, 2, ..., n corresponds to a point in n-dimensional 
metric space Mn, where n is the sample space dimension. For each xt ∈ U a class function 
T: Rn → {1, 2, ... C}: T(xt) = c is introduced; C is the number of classes. With the class 
function the learning set U is decomposed into disjoint classes Uc = {xt ∈ U | T(xt) = c};  c ∈ 
{1, 2, ..., C},  c

C
c U1=� , Uc � Ud = Ø;  c, d ∈ {1, 2, ..., C}; c ≠ d. Let the cardinality of set  Uc  

be Nc ; � =
=C

c c NN
1

.  

For the purpose of this paper we denote learning samples xi, where i is the index of point 
without respect to class to which it belongs; xi is the i-th nearest neighbor of point x. The 
distance of point xi and query point x is ri.  



6 

In the k-NN method the resulting estimation of probability that a query point belongs to a 
class is dependent on the number of points k inside the ball of radius rk. It does not matter 
how the points inside the ball are distributed. Points can be concentrated in the center or 
spread along the surface of the ball, the result is the same.  

To intuitively describe the method presented let us consider partial influences of individual 
points to the probability that point x is of class c. Suppose, for simplicity, the same priors for 
all C classes. Each point of class c in the neighborhood of point x adds a little to the 
probability that point x is of class c. This influence is the larger the closer the point considered 
is to point x and vice versa. With respect to the transformation introduced above it depends 
also on exponent equal to correlation dimension ν. 

For the first (nearest) point i = 1        ν
1

1
1

)1,|(
Sr

xcp = ,                                                       (5) 

for the second point i = 2                  ν
2

1
1

)2,|(
Sr

xcp =  ,                                                       (6) 

and so on, generally for point No. i   ν
iSr

ixcp
1

),|(1 =  .                                                       (7) 

Here S is constant dependent on dimensionality n and metrics used. 

Then, we add the partial influences ),|(1 ixcp  of individual points of class c, i.e. points of Uc, 
together by summing up 

� �
∈ ∈

∧
==

k

Ux

k

Ux
i

ci ci

r
S

ixcpkxcp ν/1
1

),|(),|( 1  .                                      (8) 

(The sum goes over indexes i for which the corresponding samples of the learning set are of 
class c.) It can be seen that any change of distance ri of any point xi of class c from point x 
will influence the probability that point x is of class c.  

Let us compare formula (8) with the formula for the k-NN method n
k

c

Sr

i
kNNxcp =

∧
),|(  . Here ic 

denotes the number of points of class c from k nearest points to point x. In practical 
computation there is usually 

k
ickNNxcp =

∧
),|( .                                                       (9) 

In a similar way, we can rewrite (8) into a more suitable form for practical computation  

�

�

=

∈
∧

= N

i
i

Ux
i

r

r
xcp ci

1

/1

/1
)|(

ν

ν

 .                                                     (10) 

(The upper sum goes over indexes i  for which the corresponding samples of the learning set 
are of class c.)  

At the same time, all N points of the learning set are used instead of some number k.  
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The denominator �
=

=
N

i ir
S

1

1
ν  is, in fact, a sum of a series {1/ri

ν}. Terms 1/ri
ν of this series are 

reciprocals of distances between the query point and points of the learning set to the -ν power. 

The numerator �
∈

=
ci Ux i

c r
S ν

1
 (eventually S1, S2) is the sum of series selected from {1/ri

ν} so 

that it contains only terms corresponding to class c. 

The approach described relies on the knowledge of the correlation dimension. This problem is 
discussed in Section 3. 

APPROXIMATION OF PROBABILITY OF CLASS AT A GIVEN POINT 
The approximation of the probability is often used in classification tasks [4], [7], [9], [10], 
[11]. The decision that a pattern is of a given class is based on finding a probability with 
which the pattern (sample, point or query point) belongs to a given class. The highest 
probability usually corresponds to the appropriate class.  

´ 
Theorem 1 
Let the task of classification into two classes be a given. Let the size of the learning set be N 
and let both classes have the same number of samples. Let ν, 1 < ν < n be the correlation 
dimension, and let the correlation integral have the form of polynomial function 
CI(r, c) = k νr , where k is a constant. Let ri > 0 be the distance of point xi from point x. Then,  

  )|(
/1

/1
lim

1

xcp
r

r

N

i
i

Ux
i

N

ci =
�

�

=

∈

∞→ ν

ν

 .                                                       (11) 

 

Proof:  

Let us consider one class.. Let us use a new variable z = νr . Then, CI(z, c) = kz is a linear 

function. By the use of z = νr , the space is mapped (“distorted”) so that the correlation 
integral, in fact the distribution function of  distances between all pairs points of class c of the 
learning set, is linear as a function of variable z. Thus, the corresponding distribution density 
function d(z, c) is constant (as a function of z) for any particular distribution of points of class 
c of the learning set.  

Let us consider a query point x. Let the distance of a point i of class c of the learning set   be 

ri. Let us consider sum �
∈ ci Ux

ii rcrd νν /),( . For this sum we have  

  ���
∈∞→∈∞→=∞→

==
cici Ux

iN
Ux

iN

N

i
iiN

rxcprxcprcrd νννν /1lim)|(/)|(lim/),(lim
1

                    (12) 

because there is a constant d(z, c) = p(c | x) for all i (uniform distribution has a constant 
density).  

Given the learning set, we have the space around point x “sampled” by individual points of 
the learning set. Let pc(ri) be an a-posteriori probability that point i in distance ri from the 
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query point x is of the class c. Then, pc(ri) is equal to 1 if point xi is of class c and pc(ri) is 
equal to zero, if the point is of the other class. Then, the particular realization of 

�
=

N

i
irxcp

1

/1)|( ν  is sum �
∈ ci Ux

ir
ν/1 (the sum here goes over indexes of class c only).  Using this 

sum, we can rewrite the right-hand side of (12) into the form 

��
∈∞→=∞→

=
ci Ux

iN

N

i
iN

rrxcp νν /1lim/1lim)|(
1

.                                       (13) 

Dividing this equation by the limit of the sum on the left-hand side, we get  

)|(
/1lim

/1lim

1

xcp
r

r

N

i
iN

Ux
iN

ci =
�

�

=∞→

∈∞→

ν

ν

and due to the same limit transition in the numerator and in the denominator we can rewrite it 
in the form (11). 

Note that the convergence of �
=

=
N

i ir
S

1

1
ν  and �

∈

=
ci Ux i

c r
S ν

1
 is the faster the larger correlation 

dimension ν is. Usually for multivariate real-life data correlation, dimension is large too; in 
any case larger than one. Theorem 1 states that probability of the class is proportional to ν

ir/1  
and formula (3) uses the sum of these ratios assuming to attain a reasonable number for class 
probability estimation. So it is supposed that for a number of samples going to infinity, the 
sum would be convergent. Clearly, let distances ri be reordered so that ri>ri+1, i=1, 2, …; then 
ratio r�i/r�i+1 < 1 for any � > 0 and according to the d’Alembert criterion the series is 
convergent. 

The question arises about the speed of diminishing the tail of the series. It can be found that 
condition that the distribution of random variable 1/rν has the mean may suffice, as shown in 
the theorem below. 

Theorem 2 
Let P(r) be the probability distribution function of neighbor distances and let there exist a 
mapping of probability density of points cix  of class c in En, En → E1: )()( ν

cici rpxp =  so that 

∞<�
∞

)(
1

1

rdP
rcr

ν . Then, for ν ≥ 2 �
=

=
cN

i ci
c r

S
1

1
ν  converges for Nc → ∞ as fast as 2/ν−

cN .  

 

For proof we use theory of U-statistics. Citing [19] let X1, X2, ... be independent observations 
on a distribution F. Consider a parametric function � = �(F) for which there is an unbiased 
estimator. Let there be a function h = h(x1, ... xm), called a “kernel”. For any kernel h, the 
corresponding U-statistics for estimation of � on the basis of sample X1, ... Xn of size n � m is 
obtained by averaging the kernel h symmetrically over the observations: 

�
��
�

�
��
�

�
==

c
iinn m

XX

m

n
XXUU ),...(

1
),...(

11  
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For example, �(F) = mean of �= )(xxdFF  and h(x) = x the corresponding U-statistics is 

XX
n

XXUU
n

i
inn === �

=1
1

1
),...( , the sample mean. Let  E(.) means mean, and (.)FE  means 

mean over specified distribution F. It holds 

Lemma. Let r be a real number � 2. Suppose that ∞<r
F hE . Then,  

∞→=− − nnOUE rr
n ),( )2/1(θ . 

Proof of Theorem 2. 

Comparing Theorem 2 with Lemma, it is easily seen that ii rX /1= , i = 1, 2, ..., U-statistics is 
the Sc, and condition EF(h)r < � holds according to assumption. Then, Sc(Nc) converges for 
Nc → ∞ as fast as 2/ν−

cN . 

 

Figs. 1 and 2 illustrate the convergence of sum Sc above for a particular query point for well-
known “vote” data [12]. The task is to find whether a president elected will be Republican or 
Democrat. Data is 15-dimensional of two classes, Republican and Democrat, and classes have 
a different number of samples. In the learning set there are a Republican 116 times and a 
Democrat 184 times. Value 11.46 is the estimate of correlation dimension here.  

 

 
Fig. 1. Sample contribution to sum Sc for 15-dimensional data “vote” and one particular query point; correlation 
dimension estimate ν = 11.46. The upper line corresponds to Republican, the lower line to Democrat. Samples 
are sorted according to distance r, i.e. also the size of sample contribution to the sum Sc. There are different 
numbers of samples of one and the other class in the learning set.  
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Fig. 2. Size of the total sum Sc for 15-dimensional data “vote” and one particular query point; correlation 
dimension estimate q  = 11.46. The upper line corresponds to Republican, the lower line to Democrat. Samples 
are sorted according to distance r, i.e. also the size of sample contribution to the sum Sc  

CLASSIFIER CONSTRUCTION 
In this section we show how to construct a classifier that incorporates the idea of correlation 
dimension (including the approaches mentioned). First, we compute the correlation dimension 
� by the method discussed in the section dealing with correlation dimension estimation. Then, 
we simply sum up all components ν

ir1 . This is made for both classes separately getting 
numbers S1 and S2 for both classes. Then, we can get the Bayes ratio or a probability 
approximation that the point x ∈ Rn (n-dimensional space of real numbers) belongs to class 1 
from equations 

2

1)(
S
S

xR =  or 
21

1
1 )(

SS
S

xp
+

=  .                                            (15) 

Then, for a threshold (cut) θ chosen, if θ>)(xR  or θ>)(1 xp , then x belongs to class 1, else 
to class 2.  

Note that we have found in practice the influence of the first nearest neighbor usually more 
negative than positive. Therefore, the first nearest neighbor is excluded from practical 
computation. As above, we simply sum up all components ν

ir1  excluding the nearest point 
without respect to its class. 

 

Generalization 
For a different number of samples of one and the other class formula (11) has the form 

��

�

∈∈

∈

→∞
+

= N

Ux
i

Ux

Ux
i

c

N

ii

ci

r
N

r
N

r
N

xcp

21¨

/1
1

/1
1

/1
1

lim)|(

21

νν

ν

 .                                         (16) 

It is only a recalculation of the relative representation of different numbers of samples of one 
and the other class [10]. 

For more than two classes, say C classes, the equation is  
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i

k

Ux
i

c

N
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ci

r
N

r
N

xcp

1

1
1

/1
1

lim)|(
ν

ν

 .                                                  (17) 

3 Correlation Dimension Estimation 
For the approximation of probability of class at a given point and classification described 
above, a fast and reliable method for correlation dimension estimation is needed. Methods for 
the estimation of correlation dimension � try somehow estimating a limit (4). Methods differ 
by approaches used and also by some kind of heuristics that usually optimize the size of 
radius r to get a realistic estimation of correlation dimension [2], [13]. 

THE LINEAR REGRESSION 
The oldest approach is based on the estimation of the slope of correlation integral in log-log 
coordinates [1]. First, a proper part of the correlation integral is selected, e.g. the leftmost half 
of the correlation integral graph. Then, standard “one dimensional” regression is used for the 
slope, i.e. correlation dimension, computation. The error of this method grows with 
dimensionality and lessens with the size of the learning set. The method proposed by 
Camastra and Vinciarelli [8] compensates for the influence of the limited size of the learning 
set at the cost of extensive computation. 

The complexity of this approach follows from necessity  

• To compute N(N-1)/2 distances, each representing n multiplications, n-1 additions. Square 
root is not necessary as one can work with distances squared. 

• Sort N(N-1)/2 items 

• To compute standard “two-dimensional” linear regression with ηN(N-1)/2 points, in fact 
shortest distances. η is a fraction (typically ½ or 1/3) of shortest distances used.  

Thus, the total complexity in the number of multiplications is nN(N-1)/2 + (ηN(N-1)/2)3 that 
is O(N6)  for large N. 

TAKENS’ ESTIMATOR  
One of the most cited estimators of the correlation dimension is Takens' estimator [7], [13]. It 
can be written in the form 

1

1

)loglog()( −

=
�−=

pN

p
pNpppT rrNNrν  ,                                    (18) 

where Np is the number of pairs considered, rp are distances between randomly chosen points 
which are smaller than r, and rNp is the largest of all rp. As in the previous case, it means that 
we use some proper part of all pairs that have the shortest distances, and then we apply the 
formula above.  

It was shown by Takens [7] that his estimation is unbiased and error converges to zero 
with pN/1 . In our tests we have found that results are quite good. 

The complexity of this approach follows from necessity for each class 

• to compute N(N-1)/2 distances, each representing n multiplications, n-1 additions.  

• sort N(N-1)/2 items; the number of (smallest) pairs considered Np=ηN(N-1)/2. 

• to compute and sum up Np times the log rp . 
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Thus, the total complexity in the number of multiplications is nN(N-1)/2 + Np(Np log(Np)) = 
nN(N-1)/2 + (ηN(N-1)/2)2 log(ηN(N-1)/2) that is O(N4log(N))  for large N. 

AVERAGING APPROACH TO CORRELATION DIMENSION ESTIMATION 
The basic problem of correlation dimension estimation is the large number of pairs that arise 
even for a moderate learning set size, as seen from the complexity considerations above. 
There is the obvious fact that the correlation integral is the probability distribution of 
distances of all pairs of points of the learning set. The idea of the correlation dimension 
estimation described below is based on the observation that distances between all pairs of 
points can be divided into groups, each group associated with one (fixed) point of the learning 
set. It appears that these distances between pairs of points are, in fact, distances of neighbors 
of that fixed point. We call the corresponding distribution function a probability distribution 
mapping function. We consider this function as a kind of map of probability distribution in 
the neighborhood of a fixed point, and it was introduced e.g. in [14], see definitions below. A 
core notion of a distribution mapping exponent in this mapping is a slightly redefined 
singularity or scaling exponent. The scaling considered here is related to distances between 
pairs of points in a multivariate space. Thus, it is closer to the correlation dimension by 
Grassberger and Procaccia [1] than to the box-counting or other fractal or multifractal 
dimension definitions [20]. 

Definition 1 

The probability distribution mapping function D(x, r) of the neighborhood of the query point 
x is the function �=

),(

)(),(
rxB

dzzprxD , where r is the distance from the query point and B(x, r) 

is a ball with center x and radius r. 

Note: It can be seen that for a fixed x, the function D(x, r), r > 0 grows monotonically from 
zero to one. Function D(x, r) for a fixed x is one-dimensional analog to the probability 
distribution function.  

One can write the probability distribution mapping function in the form  

�
−

=∞→
−

−
=

1

1

)(
1

1
lim),(

N

j
jN

rrh
N

rxD ,                                                         (19) 

where h(.) is the Heaviside step function.  

For a finite number of points, we have the empirical probability distribution mapping function 

�
−

=

∧
−

−
=

1

1

)(
1

1
),(

N

j
jrrh

N
rxD .                                                       (20) 

We show, in this section, that the correlation integral is the mean of the distribution mapping 
functions and that the correlation dimension ν can be approximated by the mean of the 
distribution mapping exponents q, as shown in the theorem below: 

Theorem 3 
Let there be a learning set of N points (samples). Let the correlation integral be CI(r) and let 
D(xi, r) be the distribution mapping function corresponding to point xi. Then, CI(r) is a mean 
of D(xi, r): 
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Proof 

Let h(x) be a Heaviside step function and lik be the distance of k-th neighbor from point xi. 
Then, the correlation integral is 
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and also 
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Comparing (23) with (19), we get (21) directly. 

The probability distribution mapping function can be – in analogy to correlation integral – 
approximated by a simple polynomial as follows.  

Definition 2 

The power approximation of the probability distribution mapping function D(x, r) is the 

function rq such that const
r

rxD
q →),(

 for r � 0+ . The exponent q is the distribution 

mapping exponent (DME).  

With respect to (4) and (21) the correlation dimension can be approximated by the mean of 
distribution mapping exponents qi:  

�
=

=
N

i
iN q

1

1ν .                                                            (24) 

Thus, the correlation dimension is, in fact, an average of all distribution mapping exponents 
computed for all points of the data set. When all points of the data set are used, the number of 
distances between pairs of points is the same as in the Grassberger-Procaccia algorithm [1]  
for assessing the correlation dimension. We have found that for sufficiently good estimation 
of the correlation dimension we can use part of the data set only, for each point to estimate the 
distribution mapping exponent, and take the average. The part of the data set may be some 
number of points randomly selected from the data set.  

Now a problem arises how many points are necessary for an appropriate assessment of the 
correlation dimension. The distribution mapping exponent varies from point to point. Suppose 
a relative variation ρ = σ/ν, where ν is a mean, i.e. the correlation dimension.  

The central limit theorem states that, under fairly common conditions, the sum of a large 
number of random variables will have an approximately normal distribution. Then, suppose 
that X1 = q1 - ν, …, Xn = qn - ν be independent and identically distributed random variables, 
all with the same arbitrary distribution, with zero mean and variance �2; and that Z is their 
mean scaled by n  , that is, 

�
�

�
�
�

�= �
=

n

i
iX

n
nZ

1

1
. 

Then, as n increases, the probability distribution of Z will tend to the normal distribution with 
zero mean and variance �2. From it follows that variable nZz /=  has variance nz /22 σσ = , 

and random variables qi have the relative standard deviation nq /)/(/ νσνσ = . Now 
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supposing relative standard deviation of the distribution mapping exponent to be 
ρ = σ/ν  = 0.1 and after n = 100 trials we have mean within ±1 % around value of the 
correlation dimension estimated by Grassberger-Procaccia’s algorithm with probability 68 % 
or within ±3 % around this value with probability 99.7 %. The value ρ = σ/ν = 0.1 will be 
discussed at the end of the third paragraph of the next Chapter. The method of averaging need 
not be limited to the Grassberger-Procaccia algorithm. We use it analogically for Takens’ 
algorithm  as well. 

 

4 Performance Analysis 
COMPLEXITY ESTIMATION 
Learning 
Learning represents approximation of the correlation dimension. When learning ks samples are 
selected from a learning set and for each of them the distribution mapping exponent is 
computed. For each such computation the learning set is searched once, distances are 
computed, and then sorted and the slope, i.e. the distribution mapping exponent, is computed. 
Thus, there are nN multiplications, NlnN exchange operations, computations of logarithms 
and solving the regression equation. Supposing multiplication as the most frequent and the 
most time-consuming operation the computational complexity of learning is roughly 
proportional to nNk s .  

The value of ks must be set up in advance. We have found ks = 100 sufficient. One can change 
it to any value up to N. In the latter case, the computational complexity of learning is 
proportional to 2nN . 

Thus, the computational complexity is much lesser than computational complexity of linear 
regression and Takens’ approaches to correlation dimension computation especially for ks 
small, as discussed above. Sensitivity of classification error to error in correlation dimension 
estimation is rather low, as discussed below. 

Recall – class estimation 
Computation for one sample given consists of computing according to the formula (15) and 
its variants (16) and (17). In the end, it is a sum of N elements. Each element is a reciprocal of 
the �-th power of distance, and computation of the distance takes n multiplications. On the 
whole, the complexity of one sample recall is proportional to nN, i.e. to the size of the 
learning set. 

SENSITIVITY OF CLASSIFICATION ERROR TO ERROR IN CD ESTIMATION 

For error sensitivity to the value of correlation dimension no particular threshold θ was used. 
Instead, we use a more general classification quality measure here, the size of area under the 
ROC (Receiver operating characteristics [15]) curve (the AUC) of dependence of 
“sensitivity”, i.e. the acceptance of class 1 samples (often called signal) on “specificity”, i.e. 
on the suppression of class 0 samples (often called background, i.e. background error). It 
holds that the larger the area under the curve (AUC, classification efficiency) the better 
classification in a general sense. The ideal case is unit area, i.e. ROC curve going through 
point (0, 1), which means 100 % sensitivity (signal efficiency) and 100 % specificity, i.e. zero 
background error. 
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Fig. 3. General classification efficiency AUC as the function of the estimated value q of correlation dimension ν 
for data “Higgs”.  Data dimensionality is 23, note that 6.5 is value of the correlation dimension, i.e. the optimal 
value of q.  

 

In Fig. 3 the classification efficiency as the function of the value q of estimated correlation 
dimension ν for data “Higgs” [16] is shown. These data have estimated correlation dimension 
ν = 6.5. For this value of q, the minimal error is 0.472, the value of error is 0.481 for 
q = n = 23. This is rather a small difference, only 1.93 %, showing that error in correlation 
dimension estimate need not be critical.  

THE CORRELATION DIMENSION AND SPREAD OF THE DME 
In Table 1 and Fig. 4 features of six different data sets and corresponding distribution-
mapping exponents are summarized. Data sets originate from the UCI Machine Learning 
Repository [12]. Note that mean distribution-mapping exponent is, in fact, the correlation 
dimension. It can be seen that 

− Mean DME (in fact, an estimate of correlation dimension) is much smaller than dimension 
for all data varying from a little more than 6.2 % (data Ionosphere) to nearly 49.5 % (data 
RKB). 

− DME of a data set lies in a rather narrow band; normalized mean squared variation, 
sigma/mean, �/� varies from 7.357 % to less than 19 %. 

− Note that lines for Heart, German, and Higgs data look suspiciously similar but these data 
come from very different independent sources. 

 
 
 
Table 1. 

Parameters of DME distribution for different data sets and color notation for Fig. 4. Data sets 
are from UCI MLR [12]. 

Data Higgs German Heart Adult RKB Ionosphere 
Color Red Aquamarine Violet Green Blue Coral 
Entries 6508 1000 270 15037 6341 151 
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Dimension 23 20 13 14 10 33 
Max DME 2.17589 3.2249 2.75272 7.66802 6.54623 2.40971 
min DME 0.782672 2.0181 1.79976 2.88812 1.68963 1.47318 
Mean DME 1.750632 2.713477 2.416463 5.27807 4.944528 2.056234 
sigma DME 0.171495 0.213795 0.177784 0.835889 0.915318 0.285874 
sigma/Mean 0.09796 0.07879 0.07357 0.1584 0.1851 0.1390 
Mean ratio of DME to dimension 0.07611 0.1357 0.1859 0.3770 0.4945 0.06231 
 

 

Fig. 4. Histograms of distribution mapping exponent for six different data sets. Histograms 
are normalized by mean value of the DME and have a unit area. For legend see Table 1. 

 

Here we cannot conclude that data are generally multifractals as the scaling exponent, DME 
varies from point to point of the set.  These variations usually lie in a rather narrow band and 
thus mean DME, i.e. the correlation dimension, may suffice for characterization of the fractal 
nature of data.  

In Fig. 4 it is seen that relative standard deviation of the DME does not exceed 25 %, and 
typical value can be estimated as 15 %. From analysis of the averaging method of correlation 
dimension estimation then follow estimates for given numbers of random trials, as stated in 
Table 2.  

Table 2. Error of CD estimation by averaging method as function of relative standard 
deviation σ/ν  of  DME and reliability level given by 1 to 3 sigma. 

No. of trials   10     100     1000   
σ/ν 1σ 2σ 3σ 1σ 2σ 3σ 1σ 2σ 3σ 

Probable margins 15% 4.74% 9.49% 14.23% 1.50% 3.00% 4.50% 0.47% 0.95% 1.42% 
Largest margins 25% 7.91% 15.81% 23.72% 2.50% 5.00% 7.50% 0.79% 1.58% 2.37% 
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TESTS WITH SYNTHETIC DATA 
Synthetic data are two dimensional and consist of three two dimensional normal distributions 
with identical a-priori probabilities. If � denotes vector of means and Cm is the covariance 
matrix, there is 

Class A: � = (2, 0.5)t,   Cm = (1, 0; 0, 1) (identity matrix) 

Class B: � = (0, 2)t,   Cm = (1, 0.5; 0.5, 1) 

Class C: � = (0, -1)t,   Cm = (1, -0.5; -0.5, 1). 

Fig. 5 shows results obtained by different methods for different learning sets of sizes from 8 
to 256 samples and a testing set of 5000 samples all from the same distributions and mutually 
independent. Each point was obtained by averaging over 100 different runs. For 1-NN method 
with L2 (Euclidean) metrics and variants of the LWM method by Paredes and Vidal [11] in 
Fig. 5 the values were adopted from the literature cited.  

 In Fig. 5 it is seen that the use of the method presented here outperforms all other 
methods shown and for large number of samples approaches fast to the Bayes limit. 

  
 

 
Fig. 5. Comparison of classification errors of synthetic data for different approaches. On horizontal axis there 

is learning set size, on vertical axis classification error. In legend 1-NN (L2) means 1-NN method with 
Euclidean metrics, CW, PW, and CPW are three methods by Paredes and Vidal [11]. “Bayes” means the Bayes 
limit. 5-NN means k-NN method with five nearest neighbors. Black lines mean the method presented here. LR 
means standard linear regression, ½ means the use of the first half of the samples; sqrt means that the square root 
of the number of samples is used for correlation dimension estimation. L1 and L2 denote Manhattan and 
Euclidean metrics used. 

 

Note that L1 (Manhattan) or L2 (Euclidean) metrics does not give significantly different 
results. Also selection of a part of DMF – in fact the part of nearest neighbors from all 
possible neighbors – used for correlation dimension estimation (one half and of the square 
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root of number of samples) does not result in a significant difference for 16 and more samples 
of the learning set.  

TESTS OF CLASSIFICATION ACCURACY WITH REAL-LIFE DATA FROM UCI MLR 
Experiments described below follow procedures described by Paredes and Vidal [11] as truly 
thorough tests. Paredes and Vidal prepared a corpus of data sets suitable for use with any 
classifier. The data sets are available on the Internet [17] and originate from the Machine 
Learning Repository, see [12]. We used all the data sets of this corpus. Each task consists of 
50 pairs of training and testing sets corresponding to 50-fold cross validation.  

In Tables 3 and 4 classification accuracy is given for different tasks and different classifiers. 
Table 3 corresponds to eight variants of the method presented here. In the headings of these 
eight double-columns LR means standard linear regression, TA means Takens’ estimator. ½ 
means the use of the first half of the samples; sqrt means that the square root of the number of 
samples is used for correlation dimension estimation. L1 and L2 denotes metrics used – 
Manhattan or Euclidean. The columns with heading σ show the standard deviation of the error 
estimate at the left column. 

In Table 4 the first five double columns give mean errors and standard deviations for the 
1-NN method, the k-NN method with k equal to the square root of the number of samples of 
the learning set, the Bayes method with ten bins histograms, perceptron neural network 
implemented in Statistica-12 system, and SVM according to Joachims [21], [22], respectively. 
The heading SVM best means the best result obtained with one of four kernels, linear, 
polynomial, Gaussian, and RBF. The last four columns in Table 4 correspond to four variants 
(CDM, CW, PW, and CPW) of the Learning Weighted Metrics (LWM) and show results by 
[11], [18]. Here data for some tasks and standard deviations are not available (N/A). 
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Table 3. Classification accuracy of eight variants of the method described here for different tasks. Results can be compared with results of other classifiers 
shown in Table 3. For explanation of columns headings see text. 

Dataset LR ½ L2 � LR ½ L1 � LRsqrtL2 � LRsqrtL1 � TA½L2 � TA½L1 � TAsqrtL2 � TAsqrtL1 � 
Australian 18.23% 0.0266 16.79% 0.0285 14.20% 0.0286 12.54% 0.0286 22.66% 0.0395 16.57% 0.0280 18.90% 0.0298 18.25% 0.0329 

Balance 25.17% 0.0700 26.82% 0.0689 24.99% 0.0717 27.27% 0.0717 26.05% 0.0701 26.93% 0.0716 26.22% 0.0697 26.88% 0.0719 

Cancer 3.85% 0.0172 4.53% 0.0194 3.98% 0.0198 4.78% 0.0198 3.90% 0.0181 4.63% 0.0205 3.73% 0.0143 4.20% 0.0473 

Diabetes 25.40% 0.0332 25.63% 0.0350 24.73% 0.0341 24.45% 0.0341 25.83% 0.0327 25.77% 0.0324 26.08% 0.0340 26.02% 0.0332 

DNA 32.12% 0.0467 25.63% 0.0436 30.69% 0.0441 26.98% 0.0441 32.29% 0.0468 25.55% 0.0436 27.15% 0.0445 26.90% 0.0444 

German 29.71% 0.0287 31.16% 0.0226 27.90% 0.0242 28.16% 0.0242 29.66% 0.0269 30.96% 0.0241 30.73% 0.0277 31.64% 0.0249 

Glass 32.50% 0.0869 29.96% 0.0811 35.24% 0.0649 32.18% 0.0649 28.59% 0.0359 25.88% 0.0628 31.80% 0.0320 30.33% 0.0386 

Heart 19.56% 0.0517 20.63% 0.0551 17.96% 0.0526 18.70% 0.0526 19.48% 0.0529 20.52% 0.0553 20.67% 0.0487 21.11% 0.0543 

Ionosphere 18.06% 0.0399 13.49% 0.0446 16.21% 0.0431 15.44% 0.0431 18.17% 0.0403 13.52% 0.0458 16.84% 0.0371 12.33% 0.0397 

Iris 5.91% 0.0694 7.91% 0.1031 5.91% 0.1057 7.91% 0.1057 5.91% 0.0839 6.91% 0.1057 5.91% 0.0839 6.91% 0.1057 
Led17 2.59% 0.0083 5.77% 0.0119 0.32% 0.0128 0.42% 0.0128 2.43% 0.0099 5.70% 0.0121 4.45% 0.0120 6.91% 0.0136 

Letter 5.03% 0.0218 4.80% 0.0214 10.18% 0.0331 11.03% 0.0331 4.98% 0.0217 4.75% 0.0213 11.78% 0.0322 12.40% 0.0329 

Liver 39.68% 0.0697 38.55% 0.0727 40.17% 0.0609 39.80% 0.0609 39.83% 0.0595 38.26% 0.0645 39.68% 0.0593 38.87% 0.0579 

Monkey1 6.74% 0.0733 6.34% 0.0694 10.39% 0.0847 10.85% 0.0847 6.79% 0.0726 6.29% 0.0698 6.30% 0.0675 7.76% 0.0963 

Phoneme 13.24% 0.0141 12.92% 0.0141 19.19% 0.0189 18.71% 0.0189 13.15% 0.0143 12.86% 0.0141 15.76% 0.0146 14.86% 0.0178 

Satimage 9.80% 0.0297 9.35% 0.0291 13.90% 0.0290 13.45% 0.0290 9.95% 0.0299 9.60% 0.0295 9.35% 0.0291 9.30% 0.0290 

Segmen 5.14% 0.0138 4.23% 0.0101 8.17% 0.0137 6.48% 0.0137 27.61% 0.0239 48.21% 0.0197 27.58% 0.0240 27.64% 0.0249 

Sonar 24.41% 0.0820 23.70% 0.0908 27.43% 0.1232 24.63% 0.1232 42.28% 0.0423 37.67% 0.1210 46.58% 0.0063 45.85% 0.0183 

Vehicle 28.54% 0.0274 29.02% 0.0297 31.49% 0.0353 30.53% 0.0353 28.89% 0.0274 28.96% 0.0319 47.17% 0.0540 32.99% 0.0366 

Vote 9.19% 0.0336 7.69% 0.0287 10.11% 0.1490 9.65% 0.1490 9.12% 0.0332 7.72% 0.0295 17.15% 0.1699 17.16% 0.1572 

Vowel 5.12% 0.0202 4.18% 0.0176 13.79% 0.0173 12.81% 0.0173 4.81% 0.0189 3.98% 0.0175 10.76% 0.0273 6.59% 0.0194 

Waveform21 15.93% 0.0120 15.69% 0.0125 15.29% 0.0122 15.32% 0.0122 15.31% 0.0116 15.21% 0.0122 17.85% 0.0127 17.42% 0.0122 

Waveform40 16.48% 0.0095 15.85% 0.0085 16.83% 0.0082 16.15% 0.0082 16.61% 0.0092 16.00% 0.0087 18.67% 0.0104 17.18% 0.0088 

Wine 4.99% 0.0312 4.03% 0.0280 6.39% 0.0259 5.09% 0.0259 5.10% 0.0320 3.59% 0.0266 6.89% 0.0324 3.71% 0.0244 
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Table 4. Results of other classifiers. For explanation of columns headings see text. N/A in some entries denotes that corresponding data is not available 
from the reference [11]. Note also, that standard deviation � is not available for CDM, CW, PW, and CPW classifiers. 

Dataset 1-NN � Sqrt-NN 	 Bayes � Neur Net � SVMbest � CDM CW PW CPW 

Australian 20.73% 0.0297 15.50% 0.0232 13.88% 0.0249 14.88% 0.0288 35.99% 0.0804 18.19% 17.37% 16.95% 16.83% 

Balance 23.61% 0.0545 32.06% 0.0861 15.17% 0.0398 5.65% 0.0340 33.17% 0.1768 35.15% 17.98% 13.44% 17.60% 

Cancer 5.07% 0.0161 3.25% 0.0110 2.68% 0.0121 3.30% 0.0125 16.34% 0.1634 8.76% 3.69% 3.32% 3.53% 

Diabetes 29.48% 0.0302 26.46% 0.0336 24.19% 0.0315 23.95% 0.0402 29.64% 0.0646 32.47% 30.23% 27.39% 27.33% 

DNA 25.72% 0.0437 34.06% 0.0474 6.66% 0.0249 5.73% 0.0233 N/A N/A 15.00% 4.72% 6.49% 4.21% 

German 32.76% 0.0268 30.90% 0.0318 24.97% 0.0289 25.37% 0.0297 27.25% 0.0405 32.15% 27.99% 28.32% 27.29% 

Glass 32.72% 0.0811 42.10% 0.0980 47.37% 0.0651 39.94% 0.0761 32.63% 0.0920 32.90% 28.52% 26.28% 27.48% 

Heart 25.11% 0.0540 16.89% 0.0496 17.44% 0.0519 19.12% 0.0587 37.22% 0.0581 22.55% 22.34% 18.94% 19.82% 

Ionosphere 14.05% 0.0385 14.70% 0.0382 9.26% 0.0353 10.99% 0.0356 18.52% 0.1655 N/A N/A N/A N/A 

Iris 5.91% 0.0962 7.91% 0.0787 9.82% 0.0923 8.00% 0.0919 6.55% 0.1437 N/A N/A N/A N/A 

Led17 11.50% 0.0158 0.12% 0.0015 0.00% 0.0000 0.18% 0.0030 11.52% 0.1001 N/A N/A N/A N/A 

Letter 4.80% 0.0214 18.70% 0.0390 28.98% 0.0454 25.88% 0.0438 2.68% 0.0161 6.30% 3.15% 4.60% 4.20% 

Liver 39.59% 0.0597 41.48% 0.0595 39.42% 0.0601 30.91% 0.0534 35.54% 0.0697 39.32% 40.22% 36.22% 36.95% 

Monkey1 2.01% 0.0385 9.27% 0.0878 28.01% 0.1090 0.57% 0.0103 2.94% 0.0548 N/A N/A N/A N/A 

Phoneme 11.83% 0.0132 20.71% 0.0173 21.47% 0.0218 16.84% 0.0223 14.39% 0.0199 N/A N/A N/A N/A 

Satimage 10.65% 0.0308 15.20% 0.0359 19.15% 0.0393 14.75% 0.0354 24.30% 0.0429 14.70% 11.70% 8.80% 9.05% 

Segmen 3.81% 0.0123 11.41% 0.0375 9.85% 0.0258 5.46% 0.0155 46.48% 0.3389 N/A N/A N/A N/A 

Sonar 18.37% 0.0695 32.51% 0.0756 31.46% 0.0916 27.98% 0.0865 19.67% 0.0593 N/A N/A N/A N/A 

Vehicle 30.51% 0.0263 31.51% 0.0264 38.40% 0.0301 19.76% 0.0304 28.23% 0.1631 32.11% 29.38% 29.31% 28.09% 

Vote 8.74% 0.0269 9.60% 0.0334 9.70% 0.0347 6.05% 0.0264 22.64% 0.1777 6.97% 6.61% 5.51% 5.26% 

Vowel 1.19% 0.0107 46.68% 0.0425 26.64% 0.0517 26.94% 0.0506 13.64% 0.0976 1.67% 1.36% 1.68% 1.24% 

Waveform21 23.73% 0.0125 14.71% 0.0113 19.26% 0.0086 15.54% 0.0116 26.94% 0.1517 N/A N/A N/A N/A 

Waveform40 28.22% 0.0147 16.24% 0.0098 20.31% 0.0092 15.93% 0.0098 32.25% 0.2068 N/A N/A N/A N/A 

Wine 5.42% 0.0290 6.15% 0.0413 4.50% 0.0308 5.12% 0.0373 27.77% 0.0805 2.60% 1.44% 1.35% 1.24% 
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5 Discussion 
The main goal of this paper was to show that the correlation dimension of the approximation 
of probability of class at a given point could be expressed as a particular dependence on 
correlation dimension. We used the assumption that the best approximation of the probability 
distribution of the data is closely related to the uniformity of the space around the query point 
x. This uniformity is reached by the use of expanded distances, i.e. by the use of rν instead of 
distance r ; ν is the correlation dimension. 

The other distance-based or kernel-based approaches have to tune weights of distances – if 
possible – or to tune parameters of kernels used to get optimal results. Based on our theory, 
the classifier proposed needs no tuning because we have found that it is a correlation 
dimension as a suitable exponent in polynomial transformation of distances. In most of 
classifiers the output variable corresponding to a class is a measure of the membership of the 
query point to the class. In our case, the output variable that expresses a class is an estimate of 
probability of the membership of the query point to the class.  

Designing a classifier, we consider partial influences of individual points to the probability 
that point x is of class c. We state here that the “influence” of neighbor points of some class 
on the probability that the query point belongs to this class is inversely proportional to rν, � is 
the correlation dimension. Thus, weighting these influences, we design a classification 
approach based on summing up all these influences for each class. For example, in the case of 
two classes we get two sums, S0, S1. Ratio S0/(S0 + S1) is an estimate of probability that the 
query point belongs to class 0. The sums are corrected (multiplied) by class priors in cases of 
different numbers of points of different classes in the learning set as it is common in most of 
classifiers, and follows from Bayes theorem. At the point of summing up influences, the 
method reminds of a kernel method with rather strange kernel that has a singularity in its 
center and not fulfilling condition to have finite integral.  

There are important findings. We have found that correlation dimension plays an essential 
role as an exponent in polynomial data space projection that finally allows handling with one-
dimensional uniform distribution. This projection may be useful for solving different 
problems. We have shown here an application for approximation of probability of class at a 
given point and for the construction of a new classifier. The classifier has no true learning 
phase. In the "learning phase" an estimate of the correlation dimension is computed. When it 
is assumed that the correlation dimension is constant, the learning set may change 
dynamically or may be enlarged or updated without necessity relearn the classifier. 

The crucial point of the idea of polynomial transformation of distances is the correlation 
dimension. Thus, the estimate of the correlation dimension is an essential part of the method. 
There is lot of papers dealing with correlation dimension estimation. We have shown in Chap. 
4 that result, i.e. that classification quality is not too sensitive to this estimate. In the case of a 
small learning set the estimation of the correlation dimension by Grassberger-Procaccia or by 
Takens’ approach are sufficiently fast. The complexity of these approaches grows 
quadratically with learning set size, and for large learning sets they are rather time-
consuming. An approximate but fast averaging approach to correlation dimension estimation 
can be used with success in this case.  

The averaging approach is based on finding that the correlation integral is a mean of 
distribution mapping functions, as proved in Theorem 3. Supported by this theorem and 
finding that the distribution mapping exponent has rather narrow spread, as shown in Fig. 4, 
we assume that also the correlation dimension is a mean of distribution mapping exponents 
for all points of the learning set. Using all points of the learning set, it is, in fact, the 
Grassberger-Procaccia method. To speed up computation we propose to use only 100 random 
points to state 100 distribution mapping exponents and use the mean as an estimate of the 
correlation dimension. The number 100 follows from observation (see Fig. 4) that ratio DME 
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to mean DME has standard deviation approx. 0.15 (max 0.25), and thus standard deviation of 
estimate of mean DME that approximates the correlation dimension 
 is 0.15
 (0.25
). Using 
100 observations, the standard deviation of mean estimate lessens to 0.015
 (0.025
). In 
practice, user may consider this standard deviation too large and use a larger number of points 
to diminish it. Comparing numbers according to Table 2 with Fig. 3, it can be  seen that 100 
trials suffice not to degrade the classification accuracy; even 10 trials may suffice in many 
cases. 

The classifier presented here was tested with 24 data sets from the Machine Learning 
repository and it was shown in Tables 3 and 4 that the classifier outperforms all other methods 
in four cases from the 24 data sets mentioned. Note that there are four other classifiers (1-NN, 
Bayes, CPW, and NeurNet) that outperform others in four cases. The Sqrt-NN outperforms 
others in two cases, and PW and SVM in one case of all 24 data sets used for testing. The 
classification errors for the best and the second best classifier for a task differ usually a little; 
we found one exception – for task Balance the NeurNet has error 5.65 %, whereas PW 
13.44 % and all others between 14 % and 35 %. At the right part of Table 3 it is seen that the 
use of one half of samples is generally a little better than the use of the square root of the 
number of samples. At the same time, L1 metrics appears slightly better than L2 metrics 
especially when Takens’ estimator is used. On the other hand, due to small differences in 
most of the cases one need not see any special advantage of L1 metrics over L2 metrics.  

As to accuracy of stating classification errors given in Table 3 and in Table 4, the error 
estimates are ratio of the number of badly recognized testing samples to total number of 
testing samples. Where possible, the standard deviation is given next right at the error 
estimate. It can be seen that the standard deviations of error estimates depend, to larger extent, 
on the task solved, and less on the type of classifier or on the corresponding value of error 
estimate. Testing the classifier on practical data we found that the influence of the first nearest 
neighbor is usually more negative than positive. It means that the classifier has a tendency to 
overestimate the class probability of the query point to the advantage of class of the nearest 
neighbor. It is also motivated by the fact that polynomial transformation used transforms 
general distribution of points around the query point to one-dimensional uniform distribution 
of variable z = rν. This variable expresses the distance of the k-th neighbor. In one-
dimensional uniform distribution it holds that the distribution of the k-th neighbor has Erlang 
distribution Erl(�, k). For the first neighbor it is the exponential distribution that has relative 
standard deviation �/� equal to one, whereas for larger k it is equal to k/1  and diminishes 
with k. Cases where r1 is relatively very small making the “weight” of the first neighbor too 
large are rather frequent, and then the first nearest neighbor is excluded from practical 
computation, as mentioned in Chap. Classifier Construction. 

The core of this paper is transformation z = νr , i.e. transformation of distance r to a variable 
that is parameterized by exponent �, the correlation dimension. The classifier proposed and 
averaging method for correlation dimension estimation demonstrates a practical power of this 
transformation. By this simple “expansion” of distance a distribution of points around a fixed 
point is transformed into uniform distribution that is easy to deal with. Here it was used for 
designing a classifier. The same transformation may also be used for study of other problems, 
e.g. complex problem of distribution function of neighbor’s distances in point processes. 
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