Skip to main content

Advertisement

Log in

Innovative technique for the direct determination of proteins in calcified aortic valves

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Aortal valve mineralization very frequently causes a genesis of aortic stenosis, which is the most often surgically treated heart disease. Hydroxyapatite deposits have been identified as one of the causes leading to the loss of elasticity of the aortic valves. It is known that phosphates/calcium is accumulated in valve tissues during mineralization, but the mechanism of this process remains unclear. The work is focused mainly on the study of protein composition of mineralized aortic valves by nano-liquid chromatography electrospray ionization in a quadrupole orthogonal acceleration time-of-flight mass spectrometry. New methodological approach based on direct enzymatic digestion of proteins contained in hydroxyapatite deposits was developed for the study of pathological processes connected with osteogenesis. Our objectives were to simplify the traditional analytical protocols of sample preparation and to analyze the organic components of the explanted aortic valves for significant degenerative aortic stenosis. The study of aortic valve mineralization on the molecular level should contribute to understanding this process, which should consequently lead to effective prevention as well as to new ways of treatment of this grave disease.

The photo of explanted calcification of human aortal valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rajamannan NM (2004) Is it time for medical therapy for aortic valve disease? Expert Rev Cardiovasc Ther 2(6):845–854

    Article  Google Scholar 

  2. Rosenhek R, Rader F, Loho N, Gabriel H, Heger M, Klaar U, Schemper M, Binder T, Maurer G, Baumgartner H (2004) Statins but not angiotensin-converting enzyme inhibitors delay progression of aortic stenosis. Circulation 110(10):1291–1295

    Article  CAS  Google Scholar 

  3. Antonini-Canterin F, Popescu BA, Huang G, Korcova-Miertusova R, Rivaben D, Faggiano P, Pavan D, Piazza R, Bolis A, Ciavattone A, Ruggiero A, Nicolosi GL (2005) Progression of aortic valve sclerosis and aortic valve stenosis: what is the role of statin treatment? Ital Heart J 6(2):119–124

    Google Scholar 

  4. Borer JS (2005) Aortic stenosis and statins: more evidence of “pleotrophy”? Arterioscler Thromb Vasc Biol 25(3):476–477

    Article  CAS  Google Scholar 

  5. Peltier M, Enriquez-Sarano M, Slama M, Tribouilloy C (2004) New concepts on the physiopathology and therapy of aortic stenosis. Arch Mal Coeur Vaiss 97(4):327–332

    CAS  Google Scholar 

  6. David TE, Ivanov JI (2003) Is degenerative calcification of native aortic valve similar to calcification of bioprosthetic heart valves? J Thorac Cardiovasc Surg 126:939–941

    Article  Google Scholar 

  7. Rajamannan NM, Sangiorgi G, Springett M, Arnold K, Mohacsi T, Spagnoli LG, Edwards WD, Tajik AJ, Schwartz RS (2001) Experimental hypercholesterolemia induces apoptosis in aortic valve. J Heart Valve Dis 10:371–374

    CAS  Google Scholar 

  8. Helske S, Kupari M, Lindstedt KA, Kovanen PY (2007) Aortic valve stenosis: an active atheroinflammatory process. Curr Opin Lipidol 18:483–491

    Article  CAS  Google Scholar 

  9. Olsson M, Thyberg J, Nilsson J (1999) Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler Tromb Vasc Biol 19:1218–1222

    Article  CAS  Google Scholar 

  10. Fusaro M, Crepaldi G, Maggi S, Galli F, D'Angelo A, Calo L, Giannini S, Miozzo D, Gallieni M (2010) Vitamin K, bone fractures, and vascular calcifications in chronic kidney disease: an important but poorly studied relationship. J Endocrinol Investig 34(4):317–323

    Google Scholar 

  11. Hsu JJ, Tintut Y, Demer LL (2008) Vitamin D and osteogenic differentiation in the artery wall. CJASN 3:1542–1547

    CAS  Google Scholar 

  12. Hass GM, Landerholm W, Hemmens A (1966) A production of calcific athero-arteriosclerosis and thromboarteritis with nicotine, vitamin D and dietary cholesterol. Am J Pathol 49:739–771

    CAS  Google Scholar 

  13. Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, Singh RJ, Stone NJ, Bonow RO, Spelsberg TC (2002) Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation 105(22):2660–2665

    Article  CAS  Google Scholar 

  14. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice. J Clin Endocrinol Metab 96:1911–1930

    Article  CAS  Google Scholar 

  15. Liu LB, Taylor CB, Peng SK, Mikkelson B (1979) Experimental arteriosclerosis in Rhesus monkeys induced by multiple risk factors: cholesterol, vitamin D, and nicotine. Paroi Arterielle 5:25–37

    CAS  Google Scholar 

  16. Brooks CJW, Harland WA, Steel G (1966) Squalene, 26-hydroxycholesterol and 7-ketocholesterol in human atheromatous plaques. Biochim Biophys Acta 125:620–622

    Article  CAS  Google Scholar 

  17. Lewis RW (1975) The squalene content of atheromatous plaques. A re-examination. Atherosclerosis 22:637–640

    Article  CAS  Google Scholar 

  18. Johnson RC, Leopold JA, Loscalzo J (2006) Vascular calcification pathobiological mechanisms and clinical implications. Circ Res 99:1044–1059

    Article  CAS  Google Scholar 

  19. Voet D, Voet JG (2004) Biochemistry, volume 1: biomolecules, mechanisms of enzyme action, and metabolism, 3rd edn. Wiley, New York, pp 663–664

    Google Scholar 

  20. Howard HT, Hsu AA, Maria T (2008) Induction of calcification by serum depletion in cell culture: a model for focal calcification in aortas related to atherosclerosis. Lipids Health Dis 7:2

    Article  Google Scholar 

  21. Symon K. Obecná a komunální hygiena. Učebnice pro lékařské fakulty (pro posluchače Lékařské fakulty hygienické). Avicenum, Praha 1982

  22. Brázda O (2008) Sláva a pád jedné preventivní metody. Medical Tribune C7

  23. Strunecká A, Patočka J (2003) Structure and bonding. In: Atwood D, Roesky C (eds) New developments in biological aluminum chemistry—book 2. Springer, Berlin, pp 139–181, 104

    Google Scholar 

  24. Kumar R (1991) Vitamin D and calcium transport. Kidney Int 40:1177–1189

    Article  CAS  Google Scholar 

  25. Savage T, Clarke AL, Giles M, Tomson CR, Raine AE (1998) Calcified plaque is common in the carotid and femoral arteries of dialysis patients without clinical vascular disease. Nephrol Dial Transplant 13:2004–2012

    Article  CAS  Google Scholar 

  26. Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, Morii H, Giachelli CM (2000) Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 87:e10–e17

    Article  CAS  Google Scholar 

  27. Ketteler M, Schlieper G, Floege J (2006) Calcification and cardiovascular health: new insights into an old phenomenon. Hypertension 47:1027–1034

    Article  CAS  Google Scholar 

  28. Moe SM, Reslerova M, Ketteler M, O'Neill K, Duan D, Koczman J, Westenfeld R, Jahnen-Dechent W, Chen NX (2005) Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int 67:2295–2304

    Article  CAS  Google Scholar 

  29. Linhartova K, Filipovsky J, Cerbak R, Sterbakova G, Hanisová I, Beranek V (2007) Severe aortic stenosis and its association with hypertension: analysis of clinical and echocardiographic parameters. Blood Pressure 16(2):122–128

    Article  Google Scholar 

  30. Demer LL, Tintut Y (2008) Vascular calcification: pathobiology of a multifaceted disease. Circulation 117:2938–2948

    Article  Google Scholar 

  31. Zipes DP, Libby P, Bonow RO, Braunwald E (2005) Braunwald's heart disease, 7th edn. Elsevier, Philadelphia

    Google Scholar 

  32. Bostrom K, Watson KE, Stanford WP, Demer LL (1995) Atherosclerotic calcification: relation to developmental osteogenesis. Am J Cardiol 75:88B–91B

    Article  CAS  Google Scholar 

  33. Mohler ER III, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528

    Article  Google Scholar 

  34. Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ (2001) Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104:2525–2532

    Article  CAS  Google Scholar 

  35. Rajamnnan NM, Subramaniam M, Rickard D, Stock RS, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T (2003) Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184

    Article  Google Scholar 

  36. Lehmann S, Walther T, Kempfert J, Rastan JA, Garbage Dhein S, Mohr FW (2009) Mechanical strain and the aortic valve: influence on fibroblasts, extracellular matrix, and potential stenosis. Ann Thorac Surg 88:1476–1483

    Article  Google Scholar 

  37. Kadena J, Dempflea CE, Grobholza R, Fischera CS, Vockea DC, Kılıça R, Sarıkoça A, Piñola R, Hagla S, Langa S, Brueckmanna M, Borggrefea M (2005) Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovasc Pathol 14(2):80

    Article  Google Scholar 

  38. Cui Z, Dewey S, Gomes AV (2011) Cardioproteomics: advancing the discovery of signaling mechanisms involved in cardiovascular diseases. Am J Cardiovasc Dis 1(3):274–292

    CAS  Google Scholar 

  39. Gil-Dones F, Martin-Rojas T, Lopez-Almodovar LF, de la Cuesta F, Darde VM, Alvarez-Llamas G, Juarez-Tosina R, Barroso G, Vivanco F, Padial LR, Barderas MG (2010) Valvular aortic stenosis: a proteomic insight. Clin Med Insights Cardiol 4:1–7

    CAS  Google Scholar 

  40. Freeman RV, Otto CM (2005) Spectrum of calcific aortic valve disease: pathogenesis, disease progression and treatment strategies. Circulation 111:3316

    Article  Google Scholar 

  41. Goldbarg SH, Elmariah S, Miller MA (2007) Insights into degenerative aortic valve disease. J Am Coll Cardiol 50:1205

    Article  Google Scholar 

  42. O'Brien KD (2006) Pathogenesis of calcific aortic valve disease: a dinase process comes of age (and a good deal more). Arterioscler Thromb Vasc Biol 26:1721

    Article  Google Scholar 

  43. Hynek R, Kuckova S, Konik P, Prchlikova R, Kodicek M (2011) A novel approach to protein analysis in hard tissues. J Surface Anal 17(3):310–313

    CAS  Google Scholar 

  44. Hynek R, Kuckova S, Hradilova J, Kodicek M (2004) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings. Rapid Commun Mass Spectrom 18(17):1896

    Article  CAS  Google Scholar 

  45. Kuckova S, Crhova M, Vankova L, Hnizda A, Hynek R, Kodicek M (2009) Towards proteomic analysis of milk proteins in historical building materials. Int J Mass Spectrom 284:42–46

    Article  CAS  Google Scholar 

  46. Kuckova S, Hynek R, Kodicek M (2009) Application of peptide mass mapping on proteins in historical mortars. J Cult Heri 10(2):244

    Article  Google Scholar 

  47. Kuckova S, Sandu ICA, Crhova M, Hynek R, Fogas I, Schafer S (2013) Protein identification and localization using mass spectrometry and staining tests in cross-sections of polychrome samples. J Cult Heri 14(1):31–37

    Article  Google Scholar 

  48. Zeman A, Šmíd M, Havelcová M, Coufalová L, Kučková Š, Velčovská M, Hynek R (2013). The structure and material composition of ossified aortic valves identified using a set of scientific methods. Journal of Asian Earth Sciences. doi:10.1016/j.jseaes.2013.07.001

  49. Arnaud P, Kalabay L (2002) Alpha2-HS glycoprotein: a protein in search of a function. Diabetes Metab Res Rev 18:311–314

    Article  CAS  Google Scholar 

  50. Grieve AG, Moss SE, Hayes MJ (2012) Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization. Int J Cell Biol 2012 (852430)

  51. Nakajima M, Kizawa H, Saitoh M, Kou I, Miyazono K, Ikegawa S (2007) Mechanisms for asporin function and regulation in articular cartilage. J Biol Chem 282:32185–32192

    Article  CAS  Google Scholar 

  52. Lee EH, Park HJ, Jeong JH, Kim YJ, Cha DW, Kwon DK, Lee SH, Cho JY (2011) The role of asporin in mineralization of human dental pulp stem cells. J Cell Physiol 226:1676–1682

    Article  CAS  Google Scholar 

  53. Tasheva ES, Koester A, Paulsen AQ, Garrett AS, Boyle DL, Davidson HJ, Song M, Fox N, Conrad GW (2002) Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol Vis 31(8):407–415

    Google Scholar 

  54. Kampmann A, Fernández B, Deindl E, Kubin T, Pipp F, Eitenmüller I, Hoefer IE, Schaper W, Zimmermann R (2009) The proteoglycan osteoglycin/mimecan is correlated with arteriogenesis. Moll Cell Biochem 322(1–2):15–23

    Article  CAS  Google Scholar 

  55. Atalar E, Ozturk E, Ozer N (2006) Plasma soluble osteopontin concentrations are increased in patients with rheumatic mitral stenosis and associated with the severity of mitral valve calcium. Am J Cardiol 98:817

    Article  CAS  Google Scholar 

  56. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor β. J Bone Miner Res 14:1239–1249

    Article  CAS  Google Scholar 

  57. Novince CM, Michalski MN, Koh AJ, Sinder BP, Entezami P, Eber MR, Pettway GJ, Rosol TJ, Wronski TJ, Kozloff KM, McCauley LK (2012) Proteoglycan 4: a dynamic regulator of skeletogenesis and parathyroid hormone skeletal anabolism. J Bone Miner Res 27:11–25

    Article  CAS  Google Scholar 

  58. Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Ann Rev Pharmacol Toxicol 40(1):617

    Article  CAS  Google Scholar 

  59. Berendsena AD, Fishera LW, Kiltsa TM, Owensb RT, Robeya PG, Gutkindc JS, Younga MF (2011) Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. PNAS 108(41):17022–17027

    Article  Google Scholar 

  60. Madalina VN, Young MF, Schaefer L (2012) Biglycan: a multivalent proteoglycan providing structure and signals. J Histochem Cytochem 60:963–975

    Article  Google Scholar 

  61. Nikitovic D, Aggelidakis J, Young MF, Iozzo RV, Karamanos NK, Tzanakakis GN (2012) The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem 287:33926–33933

    Article  CAS  Google Scholar 

  62. Unsold C, Hyytiainen M, Bruckner-Tuderman L, Keski-Oja J (2001) Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains. J Cell Sci 114:187–197

    CAS  Google Scholar 

  63. Gualandris A, Annes JP, Arese M, Noguera I, JurukovskiV RDB (2000) The latent transforming growth factor-β-binding protein-1 promotes in vitro differentiation of embryonic stem cells into endothelium. Mol Biol Cell 11(12):4295–4308

    Article  CAS  Google Scholar 

  64. Tunheim Engebretsen KV, Wæhre A, Lagethon Bjørnstad J, Skrbic B, Sjaastad I, Behmen D, Marstein HS, Yndestad A, Aukrust P, Christensen G, Tønnessen T (2012) Decorin, lumican and their GAG-chain synthesizing enzymes are regulated in myocardial remodeling and reverse remodeling in the mouse. J Appl Physiol 114(8):988–997

    Article  Google Scholar 

  65. Matheson S, Larjava H, Häkkinen L (2005) Distinctive localization and function for lumican, fibromodulin and decorin to regulate collagen fibril organization in periodontal tissues. Journal of Periodontal Research 40:312–324

    Article  CAS  Google Scholar 

  66. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386(6620):78–81

    Article  CAS  Google Scholar 

  67. Doherty TM, Fitzpatrick LA, Inoue D, Qiao JH, Fishbein MC, Detrano RC, Shah PK, Rajavashisth TB (2004) Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 25:629–672

    Article  CAS  Google Scholar 

  68. Zebboudj AF, Imura M, Boström K (2002) Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem 277:4388–4394

    Article  CAS  Google Scholar 

  69. Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona E (2011) Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 91(3):931–972

    Article  CAS  Google Scholar 

  70. George M, Ying G, Rainey MA, Solomon A, Parikh PT, Gao Q, Band V, Band H (2007) Shared as well as distinct roles of EHD proteins revealed by biochemical and functional comparisons in mammalian cells and C. elegans. BMC Cell Biol 8:3–3

    Article  Google Scholar 

  71. Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189(3):803–811

    Article  CAS  Google Scholar 

  72. Nishi N, Abe A, Iwaki J, Yoshida H, Itoh A, Shoji H, Kamitori S, Hirabayashi J, Nakamura T (2008) Functional and structural bases of a cysteine-less mutant as a long-lasting substitute for galectin-1. Glycobiology 18:1065–1073

    Article  CAS  Google Scholar 

  73. Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Current Opinion in Cell Biology 14(5):617–6231

    Article  CAS  Google Scholar 

  74. Zhang Y, Cao L, Kiani C, Yang BL, Hu W, Yang BB (1999) Promotion of chondrocyte proliferation by versican mediated by G1 domain and EGF-like motifs. J Cell Biochem 73:445–457

    Article  CAS  Google Scholar 

  75. Chan KL (2003) Is aortic stenosis a preventable disease? J Am Coll Cardiol 42:593–599

    Article  CAS  Google Scholar 

  76. Natarajan P, Kausik KR, Christopher P (2010) Cannon high-density lipoprotein and coronary heart disease: current and future therapies. J Am Coll Cardiol 55:1283–1299

    Article  CAS  Google Scholar 

  77. Kannel WB, Castelli WP, Gordon T, Mcnamara PM (1971) Serum cholesterol, lipoproteins, and the risk of coronary heart disease: the Framingham Study. Ann Intern Med 74(1):1–12

    Article  CAS  Google Scholar 

  78. Sharrett AR, Ballantyne CM, Coady SA, Heiss G, Sorlie PD, Catellier D, Patsch W (2001) Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 104:1108–1113

    Article  CAS  Google Scholar 

  79. Pullinger CR, Hennessy LK, Chatterton JE, Liu W, Love JA, Mendel CM, Frost PH, Malloy MJ, Schumaker VN, Kane JP (1995) Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity. J Clin Invest 95:1225–1234

    Article  CAS  Google Scholar 

  80. Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat H (2009) The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 50(Supplement):S189–S194

    Article  Google Scholar 

  81. Cuchel M, Rader DJ (2006) Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 113:2548–2555

    Article  Google Scholar 

  82. Segrest JP, Jones MK, De Loof H, Dashti N (2001) Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 42(9):1346–1367

    CAS  Google Scholar 

  83. von Eckardstein A, Holz H, Sandkamp M, Weng W, Funke H, Assmann G (1991) Apolipoprotein C-III(Lys-58–>Glu). Identification of an apolipoprotein C-III variant in a family with hyperalphalipoproteinemia. J Clin Invest 87:1724–1731

    Article  Google Scholar 

  84. Strickland DK, Kounnas MZ, Argraves WS (1995) LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB J 9:890–898

    CAS  Google Scholar 

  85. Zhaorigetu S, Yang Z, Toma I, McCaffrey TA, Hu Chien-An A (2011) Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks beclin 1-dependent autophagy in atherosclerotic cells. J Biol Chem 286:27389–27398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Specific University Research (MSMT no. 20/2013) and Project Operational Programme Prague Competitiveness (OPPC) CZ.2.16/3.100/22197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Coufalova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coufalova, L., Kuckova, S., Velcovska, M. et al. Innovative technique for the direct determination of proteins in calcified aortic valves. Anal Bioanal Chem 405, 8781–8787 (2013). https://doi.org/10.1007/s00216-013-7306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7306-2

Keywords

Navigation