Skip to main content

Weak Solutions to Problems Involving Inviscid Fluids

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 183))

Abstract

We consider an abstract functional-differential equation derived from the pressureless Euler system with variable coefficients that includes several systems of partial differential equations arising in the fluid mechanics. Using the method of convex integration we show the existence of infinitely many weak solutions for prescribed initial data and kinetic energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Antonelli, P., Marcati, P.: On the finite energy weak solutions to a system in quantum fluid dynamics. Commun. Math. Phys. 287, 657–686 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonelli, P., Marcati, P.: The quantum hydrodynamics system in two space dimensions. Arch. Rational Mech. Anal. 203, 499–527 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audiard, C.: Dispersive smoothing for the Euler-Korteweg model. SIAM J. Math. Anal. 44(4), 3018–3040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benzoni-Gavage, S.: Spectral transverse instability of solitary waves in Korteweg fluids. J. Math. Anal. Appl. 361(2), 338–357 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benzoni-Gavage, S.: Planar traveling waves in capillary fluids. Differ. Integral Equ. 26(3–4), 439–485 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Bresch, D., Desjardins, B., Ducomet, B.: Quasi-neutral limit for a viscous capillary model of plasma. Ann. Inst. Poincare 22, 1–9 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ. 11(3), 493–519 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chiodaroli, E., Feireisl, E., Kreml, O.: On the weak solutions to the equations of a compressible heat conducting gas. Annal. Inst. Poincaré, Anal. Nonlinear 32, 225–243 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  10. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70, 167–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Lellis, C., Székelyhidi Jr., L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donatelli, D., Feireisl, E., Marcati, P.: Well/ill posedness for the Euler-Korteweg-poisson system and related problems. Commun. Partial Differ. Equ. 40(7), 1314–1335 (2015)

    Google Scholar 

  14. Feireisl, E.: On weak solutions to a diffuse interface model of a binary mixture of compressible fluids. Discret. Contin. Dyn. S.—Ser. S. 9(1), 173–183 (2014)

    Google Scholar 

  15. Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes in Physics, vol. 773. Springer, Berlin (2009)

    Google Scholar 

  16. Kotschote, M.: Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid. J. Math. Fluid Mech. 12(4), 473–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kotschote, M.: Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg type. SIAM J. Math. Anal. 44(1), 74–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Knopps, L.J. (ed.) Nonlinear Analysis and Mechanics, Heriot-Watt Symposium. Research Notes in Math, vol. 39, pp. 136–211. Pitman, Boston (1975)

    Google Scholar 

Download references

Acknowledgements

The research of E.F. leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Feireisl, E. (2016). Weak Solutions to Problems Involving Inviscid Fluids. In: Shibata, Y., Suzuki, Y. (eds) Mathematical Fluid Dynamics, Present and Future. Springer Proceedings in Mathematics & Statistics, vol 183. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56457-7_13

Download citation

Publish with us

Policies and ethics