Skip to main content

Metamaterials

  • Chapter
  • First Online:
Terahertz Spectroscopy and Imaging

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 171))

  • 6239 Accesses

Abstract

We provide an overview of the THz research in metallic and dielectric metamaterials. We introduce the appropriate length scales and averaging procedures to define effective metamaterial properties. A broader discussion of elaboration technologies and experimental determination of metamaterial properties is provided. Finally, we focus on applications aiming to achieve negative refractive index and active control of THz light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.G. Veselago, Electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. Usp. 10, 509–514 (1968)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, A.J. Holden, W.J. Stewart, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  ADS  Google Scholar 

  3. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter 10, 4785 (1998)

    Google Scholar 

  4. J.B. Pendry, A.J. Holden, D.J. Robins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  ADS  Google Scholar 

  5. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  Google Scholar 

  6. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  7. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Terahertz magnetic response from artificial materials. Science 303, 1494 (2004)

    Article  ADS  Google Scholar 

  8. H.-T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444, 597–600 (2006)

    Article  ADS  Google Scholar 

  9. R. Marqués, F. Martín, M. Sorolla, Metamaterials with Negative Parameters (Wiley, New York, 2008)

    Google Scholar 

  10. S.A. Ramakrishna, T.M. Grzegorczyk, Physics and applications of negative refractive index materials, (CRC Press, Boca Raton, 2009)

    Google Scholar 

  11. W. Cai, V. Shalaev, Opticals metamaterials, (Springer, New York, 2010)

    Google Scholar 

  12. H.-T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, Manipulation of terahertz radiation using metamaterials. Laser Photonics Rev. 5, 513–533 (2011)

    Article  Google Scholar 

  13. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, (Butterworth-Heinemann, Oxford, 1984)

    Google Scholar 

  14. J.D. Jackson, Classical electrodynamics (Wiley, Hoboken, 1998)

    Google Scholar 

  15. J.C. Maxwell Garnett, Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. 203, 385–420 (1904)

    Article  ADS  Google Scholar 

  16. D.A.G. Bruggeman, Calculation of various physics constants in heterogenous substances. Annalen Der Physik 24, 636–664 (1935)

    Article  ADS  Google Scholar 

  17. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, A. Tünnermann, Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range. Opt. Express 17, 3063–3077 (2009)

    Article  ADS  Google Scholar 

  18. C. Kadlec, F. Kadlec, P. Kuzel, K. Blary, P. Mounaix, Materials with on-demand refractive indices in the terahertz range. Opt. Lett. 33, 2275–2277 (2008)

    Article  ADS  Google Scholar 

  19. S. Biber, D. Schneiderbanger, L.-P. Schmidt, Design of a controllable attenuator with high dynamic range for THz-frequencies based on optically stimulated free carriers in high-resistivity silicon. Frequenz 59, 141–144 (2005)

    Article  Google Scholar 

  20. Y.W. Chen, P.Y. Han, X.-C. Zhang, Three-dimensional inverted photonic grating with engineerable refractive indices for broadband antireflection of terahertz waves. Opt. Lett. 35, 3159–3161 (2010)

    Article  ADS  Google Scholar 

  21. Y. Zheng, A. Johnson, E. Pyde, K.J. Chau, Particle-size effects on the terahertz transmittance of metallic particle ensembles: comparison with effective medium theory. Appl. Phys. Lett. 96, 211111 (2010)

    Article  ADS  Google Scholar 

  22. H.-K. Nienhuys, V. Sundström, Influence of plasmons on terahertz conductivity measurements. Appl. Phys. Lett. 87, 012101 (2005)

    Article  ADS  Google Scholar 

  23. H. Němec, P. Kuzel, V. Sundström, Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy. J. Photochem. Photobiol. A 215, 123–139 (2010)

    Article  Google Scholar 

  24. E. Hendry, M. Koeberg, B. O’Regan, M. Bonn, Local field effects on electron transport in nanostructures TiO\(_{2}\) revealed by terahertz spectroscopy. Nano Lett. 6, 755–759 (2006)

    Article  ADS  Google Scholar 

  25. K.J. Button, Infrared and Millimeter Waves, Millimeter components and techniques, Chap. 6, vol. 13 (Academic, New York, 1985), pp. 175–185

    Google Scholar 

  26. Y. Zheng, A. Johnson, E. Pyde, K.J. Chau, Particle-size effects on the terahertz transmittance of metallic particle ensembles: Comparison with effective medium theory. Appl. Phys. Lett. 96, 211111 (2010)

    Article  ADS  Google Scholar 

  27. M. Walther, D.G. Cooke, C. Sherstan, M. Hajar, M.R. Freeman, F.A. Hegmann, Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys. Rev. B 76, 125408 (2007)

    Article  ADS  Google Scholar 

  28. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Matallösungen. Ann. Phys. 25, 376–445 (1908)

    Google Scholar 

  29. S. O’Brien, J.B. Pendry, Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Matter 14, 4035–4044 (2002)

    Google Scholar 

  30. V. Yannopapas, A. Moroz, Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges. J. Phys. Condens. Matter 17, 3717–3734 (2005)

    Google Scholar 

  31. H. Němec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, Tunable terahertz metamaterials with negative permeability. Phys. Rev. B 79, 241108(R) (2009)

    Google Scholar 

  32. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, L. Li, Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008)

    Article  ADS  Google Scholar 

  33. K. Vynck, D. Felbacq, E. Centeno, A.I. Cabuz, D. Cassagne, B. Guizal, All-dielectric rod-type metamaterials at optical frequencies. Phys. Rev. Lett. 102, 133901 (2009)

    Article  ADS  Google Scholar 

  34. A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, M. Walther, Lattice modes mediate radiative coupling in metamaterial arrays. Opt. Express 17, 22108–22113 (2009)

    Article  ADS  Google Scholar 

  35. R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, The impact of nearest neighbor interaction on the resonances in terahertz metamaterials. Appl. Phys. Lett. 94, 021116 (2009)

    Article  ADS  Google Scholar 

  36. D.R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A.J. Taylor, J.F. O’Hara, Tailored resonator coupling for modifying the terahertz metamaterial response. Opt. Express 19, 10679–10685 (2011)

    Article  ADS  Google Scholar 

  37. M.N.O. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed. (CRC Press LLC, Boca Raton, 2001)

    Google Scholar 

  38. http://www.ansoft.com/

  39. http://www.cst.com/

  40. J.B. Pendry, A. MacKinnon, Calculation of photon dispersion relations. Phys. Rev. Lett. 69, 2772–2775 (1992)

    Article  ADS  Google Scholar 

  41. J.B. Pendry, Photonic band structures. J. Mod. Opt. 41, 209–229 (1994)

    Article  ADS  Google Scholar 

  42. P. Markoš, C.M. Soukoulis, Numerical studies of left-handed materials and arrays of split ring resonators. Phys. Rev. E 65, 036622 (2002)

    Article  ADS  Google Scholar 

  43. D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002)

    Article  ADS  Google Scholar 

  44. S. Zhang, W. Fan, K.J. Malloy, S.R. Brueck, N.C. Panoiu, R.M. Osgood, Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005)

    Article  ADS  Google Scholar 

  45. M.G. Maharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811–818 (1981)

    Article  ADS  Google Scholar 

  46. T.F. Gundogdu, N. Katsarakis, M. Kafesaki, R.S. Penciu, G. Konstantinidis, A. Kostopoulos, E.N. Economou, C.M. Soukoulis, Negative index short-slab pair and continuous wires metamaterials in the far infrared regime. Opt. Express 16, 9173–9180 (2008)

    Article  ADS  Google Scholar 

  47. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R.S. Penciu, T.F. Gundogdu, M. Kafesaki, E.N. Economou, Th Koschny, C.M. Soukoulis, Magnetic response of split-ring resonators in the far-infrared frequency regime. Opt. Lett. 30, 1348–1350 (2005)

    Article  ADS  Google Scholar 

  48. W.J. Padilla, D.R. Smith, D.N. Basov, Spectroscopy of metamaterials from infrared to optical frequencies. J. Opt. Soc. Am. B 23, 404–414 (2006)

    Article  ADS  Google Scholar 

  49. T.F. Gundogdu, I. Tsiapa, A. Kostopoulos, G. Konstantinidis, N. Katsarakis, R.S. Penciu, M. Kafesaki, E.N. Economou, Th Koschny, C.M. Soukoulis, Experimental demonstration of negative magnetic permeability in the far-infrared frequency regime. Appl. Phys. Lett. 89, 084103 (2006)

    Article  ADS  Google Scholar 

  50. T. Driscoll, G.O. Andreev, D.N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N.M. Jokerst, D.R. Smith, Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy. Appl. Phys. Lett. 90, 092508 (2007)

    Article  ADS  Google Scholar 

  51. Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda, K. Hirao, K. Tanaka, Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy. Opt. Express 16, 4785–4796 (2008)

    Article  ADS  Google Scholar 

  52. M. Awad, M. Nagel, H. Kurz, Negative-index metamaterial with polymer-embedded wire-pair structures at terahertz frequencies. Opt. Lett. 33, 2683–2685 (2008)

    Article  ADS  Google Scholar 

  53. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, M. Walther, Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. Opt. Express 17, 3826–3834 (2009)

    Article  ADS  Google Scholar 

  54. Ch. Menzel, C. Rockstuhl, F. Lederer, Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A 82, 053811 (2010)

    Article  ADS  Google Scholar 

  55. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A.K. Azad, R.A. Cheville, F. Lederer, W. Zhang, N.I. Zheludev, Terahertz metamaterial with asymmetric transmission. Phys. Rev. B 80, 153104 (2009)

    Article  ADS  Google Scholar 

  56. D.R. Smith, D.C. Vier, Th Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)

    Article  ADS  Google Scholar 

  57. T. Driscoll, D.N. Basov, W.J. Padilla, J.J. Mock, D.R. Smith, Electromagnetic characterization of planar metamaterials by oblique spectroscopic measurements. Phys. Rev. B 75, 115114 (2007)

    Article  ADS  Google Scholar 

  58. A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, P. Kuzel, Phase-sensitive time-domain terahertz reflection spectroscopy. Rev. Sci. Instrum. 74, 4711–4717 (2003)

    Article  ADS  Google Scholar 

  59. L. Duvillaret, F. Garet, J.-L. Coutaz, A Reliable Method for Extraction of Material Parameters in Terahertz Time-Domain Spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996)

    Article  Google Scholar 

  60. H. Němec, F. Kadlec, P. Kuzel, L. Duvillaret, J.-L. Coutaz, Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy. Opt. Commun. 260, 175–183 (2006)

    Article  ADS  Google Scholar 

  61. P. Uhd Jepsen, D.G. Cooke, M. Koch, Terahertz spectroscopy and imaging - Modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011)

    Article  Google Scholar 

  62. W.J. Padilla, M.T. Aronsson, C. Highstrete, M. Lee, A.J. Taylor, R.D. Averitt, Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Phys. Rev. B 75, 041102 (2007)

    Article  ADS  Google Scholar 

  63. M.A. Seo, A.J.L. Adam, J.H. Kang, J.W. Lee, S.C. Jeoung, Q.H. Park, P.C.M. Planken, D.S. Kim, Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors. Opt. Express 15, 11781–11789 (2007)

    Article  ADS  Google Scholar 

  64. A.K. Azad, J. Dai, W. Zhang, Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt. Lett. 31, 634–636 (2006)

    Article  ADS  Google Scholar 

  65. W.J. Padilla, M.T. Aronsson, C. Highstrete, M. Lee, A.J. Taylor, R.D. Averitt, Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys. Rev. B 75, 041102(R) (2007)

    Google Scholar 

  66. H.-T. Chen, S. Palit, T. Tyler, C.M. Bingham, J.M.O. Zide, J.F. O’Hara, D.R. Smith, A.C. Gossard, R.D. Averitt, W.J. Padilla, N.M. Jokerst, A.J. Taylor, Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Appl. Phys. Lett. 93, 091117 (2008)

    Article  ADS  Google Scholar 

  67. H.-T. Chen, H. Lu, A.K. Azad, R.D. Averitt, A.C. Gossard, S.A. Trugman, J. F. O‘Hara, and A. J. Taylor, “ Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays”. Opt. Express 16, 7641–7648 (2008)

    Article  ADS  Google Scholar 

  68. D. Wu, N. Fang, C. Sun, X. Zhang, Terahertz plasmonic high pass filter. Appl. Phys. Lett. 83, 201–203 (2003)

    Article  ADS  Google Scholar 

  69. H. Tao, A.C. Strikwerda, K. Fan, W.J. Padilla, X. Zhang, R.D. Averitt, Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009)

    Article  ADS  Google Scholar 

  70. M. Aznabet, M. Navarro-Cía, S.A. Kuznetsov, A.V. Gelfand, N.I. Fedorinina, YuG Goncharov, M. Beruete, O. El Mrabet, M. Sorolla, Polypropylene-substrate-based SRR- and CSRR- metasurfaces for submillimeter waves. Opt. Express 16, 18312–18319 (2008)

    Article  ADS  Google Scholar 

  71. H. Tao, A.C. Strikwerda, K. Fan, C.M. Bingham, W.J. Padilla, X. Zhang, R.D. Averitt, Terahertz metamaterials on free-standing highly-flexible polyimide substrates. J. Phys. D: Appl. Phys. 41, 232004 (2008)

    Article  ADS  Google Scholar 

  72. X. Liu, S. MacNaughton, D.B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R.D. Averitt, M.R. Dokmeci, S. Sonkusale, W.J. Padilla, Metamaterials on parylene thin film substrates: Design, fabrication, and characterization at terahertz frequency. Appl. Phys. Lett. 96, 011906 (2010)

    Article  ADS  Google Scholar 

  73. H. Tao, J.J. Amsden, A.C. Strikwerda, K. Fan, D.L. Kaplan, X. Zhang, R.D. Averitt, F.G. Omenetto, Metamaterial silk composites at terahertz frequencies. Adv. Mater. 22, 3527–3531 (2010)

    Article  Google Scholar 

  74. N.R. Han, Z.C. Chen, C.S. Lim, B. Ng, M.H. Hong, Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt. Express 19, 6990–6998 (2011)

    Article  ADS  Google Scholar 

  75. H.O. Moser, J.A. Kong, L.K. Jian, H.S. Chen, G. Liu, M. Bahou, S.M.P. Kalaiselvi, S.M. Maniam, X.X. Cheng, B.I. Wu, P.D. Gu, A. Chen, S.P. Heussler, S. bin Mahnood, and L. Wen, “ Free-standing THz electromagnetic metamaterials”. Opt. Express 16, 13773–13780 (2008)

    Article  ADS  Google Scholar 

  76. B.D.F. Casse, H.O. Moser, J.W. Lee, M. Bahou, S. Inglis, L.K. Jian, Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography. Appl. Phys. Lett. 90, 254106 (2007)

    Article  ADS  Google Scholar 

  77. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004)

    Article  ADS  Google Scholar 

  78. H.-T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photon. 2, 295–298 (2008)

    Article  Google Scholar 

  79. S.C. Saha, Y. Ma, J.P. Grant, A. Khalid, D.R.S. Cumming, Imprinted terahertz artificial dielectric quarter wave plates. Opt. Express 18, 12168–12175 (2010)

    Article  Google Scholar 

  80. H.O. Moser, B.D.F. Casse, O. Wilhelmi, B.T. Saw, Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. Phys. Rev. Lett. 94, 063901 (2005)

    Article  ADS  Google Scholar 

  81. M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nature Mat. 7, 543–546 (2008)

    Article  ADS  Google Scholar 

  82. S.Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A.A. Bettiol, Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys. Rev. B 80, 153103 (2009)

    Article  ADS  Google Scholar 

  83. R. Yahiaoui, H. Němec, P. Kuzel, F. Kadlec, C. Kadlec, P. Mounaix, Broadband dielectric terahertz metamaterials with negative permeability. Opt. Lett. 34, 3541 (2009)

    Article  Google Scholar 

  84. C. Kang, C.-S. Kee, I.-B. Sohn, J. Lee, Characterization of terahertz wave transmission through complementary metamaterials with split ring resonator arrays, in Abstracts from 34th International conference on Infrared, Millimeter, and Terahertz Waves (Busan, South Korea, 2009), pp. 767–768

    Google Scholar 

  85. T. Kondo, T. Nagashima, M. Hangyo, Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer. Jpn. J. Appl. Phys. Part 2(42), L373–L375 (2003)

    Article  ADS  Google Scholar 

  86. K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, M. Hangyo, Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer. Appl. Phys. Express 3, 016701 (2010)

    Article  ADS  Google Scholar 

  87. M. Walther, A. Ortner, H. Meier, U. Löffelmann, P.J. Smith, J.G. Korvink, Terahertz metamaterials fabricated by inkjet printing. Appl. Phys. Lett. 95, 251107 (2009)

    Article  ADS  Google Scholar 

  88. K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, M. Hangyo, A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region. J. Appl. Phys. 107, 024907 (2010)

    Article  ADS  Google Scholar 

  89. D.A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, I. Vendik, How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry. Adv. Funct. Mater. 20, 1116–1124 (2010)

    Article  Google Scholar 

  90. S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, S.R.J. Brueck, Fabrication of 1D and 2D vertical nanomagnetic resonators. J. Vac. Sci. Tech. B 22, 3327–3330 (2004)

    Article  Google Scholar 

  91. A. Tuniz, B.T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, S.C. Fleming, Drawn metamaterials with plasmonic response at terahertz frequencies. Appl. Phys. Lett. 96, 191101 (2010)

    Article  ADS  Google Scholar 

  92. F. Miyamaru, M. Wada Takeda, K. Taima, Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region. Appl. Phys. Express 2, 042001 (2009)

    Article  ADS  Google Scholar 

  93. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, M. Wada Takeda, Three-dimensional bulk metamaterials operating in the terahertz range. Appl. Phys. Lett. 93, 081105 (2010)

    Article  ADS  Google Scholar 

  94. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, Terahertz metamaterials with VO\(_{2}\) cut-wires for thermal tunability. Appl. Phys. Lett. 97, 021111 (2010)

    Article  ADS  Google Scholar 

  95. Y.W. Chen, P.Y. Han, X.-C. Zhang, Tunable broadband antireflection structures for silicon at terahertz frequency. Appl. Phys. Lett. 94, 041106 (2009)

    Article  ADS  Google Scholar 

  96. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009)

    Article  ADS  Google Scholar 

  97. A. Pimenov, A. Loidl, Experimental demonstration of artificial dielectrics with a high index of refraction. Phys. Rev. B 74, 193102 (2006)

    Article  ADS  Google Scholar 

  98. C.R. Williams, S.R. Andrews, S.A. Maier, A.I. Fernández-Domínguez, L. Martín-Moreno, F.J. García-Vidal, Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photon. 2, 175–179 (2008)

    Article  ADS  Google Scholar 

  99. Q. Gan, Z. Fu, Y.J. Ding, F.J. Bartoli, Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys. Rev. Lett. 100, 256803 (2008)

    Article  ADS  Google Scholar 

  100. A. Ishikawa, S. Zhang, D.A. Genov, G. Bartal, X. Zhang, Deep subwavelength terahertz waveguides using gap magnetic plasmon. Phys. Rev. Lett. 102, 043904 (2009)

    Article  ADS  Google Scholar 

  101. J. Lee, K. Lee, H. Park, G. Kang, D.-H. Yu, K. Kim, Tunable subwavelength focusing with despersion-engineered metamaterials in the terahertz regime. Opt. Lett. 35, 2254–2256 (2010)

    Article  ADS  Google Scholar 

  102. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, M.W. Takeda, Three-dimensional bulk metamaterials operating in the terahertz range. Appl. Phys. Lett. 96, 081105 (2010)

    Article  ADS  Google Scholar 

  103. K. Fan, A.C. Strikwerda, H. Tao, X. Zhang, R.D. Averitt, 3D Stand-up Metamaterials with a Purely Magnetic Resonance at Terahertz Frequencies, in Proceeding of the 30th Conference on Lasers and Electro-Optics / International Quantum Electronics and Laser Science Conference (CLEO/QELS ’10), San Jose, CA, USA, CTuF1, 18–20 May 2010

    Google Scholar 

  104. K. Fan, A.C. Strikwerda, H. Tao, X. Zhang, R.D. Averitt, Stand-up magnetic metamaterials at terahertz frequencies. Opt. Express 19, 12619–12627 (2011)

    Article  ADS  Google Scholar 

  105. C.M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, E.N. Economou, The science of negative index materials. J. Phys. Condens. Matter 20, 304217 (2008)

    Google Scholar 

  106. J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J.L. Coutaz, D. Lippens, Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion. J. Appl. Phys. 108, 014907 (2010)

    Article  ADS  Google Scholar 

  107. Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mie resonance-based dielectric metamaterials. Mat. Today 12, 60–69 (2009)

    Google Scholar 

  108. P. Kuzel, H. Němec, F. Kadlec, Highly tunable structures for the THz range based on strontium titanate heterostructures and metamaterials, in Proceedings of 2nd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Pamplona, Spain, September, 2008), pp. 21–26

    Google Scholar 

  109. K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, M. Hangyo, Terahertz metamaterials composed of TiO\(_{2}\) cube arrays, in Proceedings of 2nd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Pamplona, Spain, September, 2008), pp. 21–26

    Google Scholar 

  110. P. Kuzel, F. Kadlec, Tunable structures and modulators for THz light. Comptes Rendus Physique 9, 197–214 (2008)

    Article  ADS  Google Scholar 

  111. W.L. Chan, H.-T. Chen, A.J. Taylor, I. Brener, M.J. Cich, A spatial light modulator for terahertz beams. Appl. Phys. Lett. 94, 213511 (2009)

    Article  ADS  Google Scholar 

  112. H.-T. Chen, J.F. O’Hara, A.J. Taylor, R.D. Averitt, C. Highstrete, M. Lee, W.J. Padilla, Complementary planar terahertz metamaterials. Opt. Express 15, 1084–1095 (2007)

    Article  ADS  Google Scholar 

  113. A.K. Azad, A.J. Taylor, E. Smirnova, J.F. O’Hara, Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Appl. Phys. Lett. 92, 011119 (2008)

    Article  ADS  Google Scholar 

  114. H.-T. Chen, W.J. Padilla, M.J. Cich, A.K. Azad, R.D. Averitt, A.J. Taylor, A metamaterial solid-state terahertz phase modulator. Nature Photon. 3, 148–151 (2009)

    Article  ADS  Google Scholar 

  115. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, Polarization-independent active metamaterial for high-frequency terahertz modulation. Opt. Express 17, 819–827 (2009)

    Article  Google Scholar 

  116. W.J. Padilla, A.J. Taylor, C. Highstrete, M. Lee, R.D. Averitt, Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006)

    Article  ADS  Google Scholar 

  117. H.-T. Chen, W.J. Padilla, J.M.O. Zide, S.R. Bank, A.C. Gossard, A.J. Taylor, R.D. Averitt, Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoislands superlattices. Opt. Lett. 32, 1620–1622 (2007)

    Article  ADS  Google Scholar 

  118. C. Kadow, S.B. Fleischer, J.P. Ibbetson, J.E. Bowers, A.C. Gossard, J.W. Dong, C.J. Palmstrøm, Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics. Appl. Phys. Lett. 75, 3548 (1999)

    Article  ADS  Google Scholar 

  119. Y. Shi, Q. Zhou, W. Liu, J. Liu, C. Zhang, Anomalous transmission of terahertz waves in arrays of double-ring resonators induced by a 400 nm pump pulse. Appl. Phys. Lett. 98, 191112 (2011)

    Article  ADS  Google Scholar 

  120. J.-M. Manceau, N.-H. Shen, M. Kafesaki, C.M. Soukoulis, S. Tzortzakis, Dynamics response of metamaterials in the terahertz regime: blueshift tunability and broadband phase modulation. Appl. Phys. Lett. 96, 021111 (2010)

    Article  ADS  Google Scholar 

  121. N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E.N. Economou, C.M. Soukoulis, Broadband blueshift tunable metamaterials and dual-band switches. Phys. Rev. B 79, 161102(R) (2009)

    Google Scholar 

  122. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T.H. Hand, W.J. Padilla, N.M. Jokerst, S.A. Cummer, A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators. Appl. Phys. Lett. 93, 191110 (2008)

    Article  ADS  Google Scholar 

  123. T. Driscoll, G.O. Andreev, D.N. Basov, S. Palit, S.Y. Cho, N.M. Jokerst, D.R. Smith, Tuned permeability in terahertz split-ring resonators for devices nad sensors. Appl. Phys. Lett. 91, 062511 (2007)

    Article  ADS  Google Scholar 

  124. P. Kuzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, N. Klein, Dielectric tunability of SrTiO\(_{3}\) thin films in the terahertz range. Appl. Phys. Lett. 88, 102901 (2006)

    Article  ADS  Google Scholar 

  125. C. Kadlec, V. Skoromets, F. Kadlec, H. Nemec, J. Hlinka, J. Schubert, G. Panaitov, P. Kuzel, Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO\(_{3}\) /DyScO\(_{3}\) heterostructure. Phys. Rev. B 80, 174116 (2009)

    Article  ADS  Google Scholar 

  126. R. Singh, A.K. Azad, Q.X. Jia, A.J. Taylor, H.-T. Chen, Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Opt. Lett. 36, 1230–1232 (2011)

    Article  ADS  Google Scholar 

  127. J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, P. Wu, Tuning of superconducting niobium nitride terahertz metamaterials. Opt. Express 19, 12021–12026 (2011)

    Article  ADS  Google Scholar 

  128. G. He, R.-X. Wu, Y. Poo, P. Chen, Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh. J. Appl. Phys. 107, 093522 (2010)

    Article  ADS  Google Scholar 

  129. B. Ozbey, O. Aktas, Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Opt. Express 19, 5741–5752 (2011)

    Article  ADS  Google Scholar 

  130. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7181–7188 (2008)

    Article  ADS  Google Scholar 

  131. H. Tao, C.M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication and characterization. Phys. Rev. B 78, 541103(R) (2008)

    Google Scholar 

  132. N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerts, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79, 125104 (2009)

    Article  ADS  Google Scholar 

  133. J. Grant, Y. Ma, S. Saha, L.B. Lok, A. Khalid, D.R.S. Cumming, Polarization insensitive terahertz metamaterial absorber. Opt. Lett. 36, 1524–1526 (2011)

    Article  ADS  Google Scholar 

  134. J. Zhang, P.A.R. Ade, P. Mauskopf, L. Moncelsi, G. Savini, N. Whitehouse, New artificial dielectric metamaterial and its application as a terahertz antireflection coating. Appl. Opt. 48, 6635–6642 (2009)

    Article  ADS  Google Scholar 

  135. X.G. Peralta, E.I. Smirnova, A.K. Azad, H.-T. Chen, A.J. Taylor, I. Brener, J.F. O’Hara, Metamaterials for THz polarimetric devices. Opt. Express 17, 774–783 (2009)

    Article  ADS  Google Scholar 

  136. A.C. Strikwerda, K. Fan, H. Tao, D.V. Pilon, X. Zhang, R.D. Averitt, Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies. Opt. Express 17, 136–149 (2009)

    Article  ADS  Google Scholar 

  137. P. Weis, O. Paul, C. Imhof, R. Beigang, M. Rahm, Strongly birefringent metamaterials as negative index terahertz wave plates. Appl. Phys. Lett. 95, 171104 (2009)

    Article  ADS  Google Scholar 

  138. I.A.I. Al-Naib, C. Jansen, N. Born, M. Koch, Polarization and angle independent terahertz metamaterials with high Q-factors. Appl. Phys. Lett. 98, 091107 (2011)

    Article  ADS  Google Scholar 

  139. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  140. K.L. Tsakmakidis, A.D. Boardman, O. Hess, Trapped rainbow storage of light in metamaterials. Nature 450, 397–401 (2007)

    Article  ADS  Google Scholar 

  141. P.R. Berman, Goos-Hänchen shift in negatively refractive media. Phys. Rev. E 66, 067603 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kužel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kužel, P., Němec, H. (2012). Metamaterials. In: Peiponen, KE., Zeitler, A., Kuwata-Gonokami, M. (eds) Terahertz Spectroscopy and Imaging. Springer Series in Optical Sciences, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29564-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29564-5_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29563-8

  • Online ISBN: 978-3-642-29564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics