Skip to main content

A Comparison of Simplicial and Block Finite Elements

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications 2009

Abstract

In this note we discuss and compare the performance of the finite element method (FEM) on two popular types of meshes – simplicial and block ones. A special emphasis is put on the validity of discrete maximum principles and on associated (geometric) mesh generation/refinement issues in higher dimensions. As a result, we would recommend to carefully reconsider the common belief that the simplicial finite elements are very convenient to describe complicated geometries (which appear in real-life problems), and also that the block finite elements, due to their simplicity, should be used if the geometry of the solution domain allows that.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandts, J., Korotov, S., Křížek, M.: Dissection of the path-simplex in R n into n path-subsimplices. Linear Algebra Appl. 421, 382–393 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brandts, J., Korotov, S., Křížek, M.: The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem. Linear Algebra Appl. 429, 2344–2357 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brandts, J., Korotov, S., Křížek, M., Šolc, J.: On nonobtuse simplicial partitions. SIAM Rev. 51, 317–335 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ciarlet, P.G.: Discrete maximum principle for finite-difference operators. Aequationes Math. 4, 338–352 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  6. Eppstein, D., Sullivan, J.M., Üngör, A.: Tiling space and slabs with acute tetrahedra. Comput. Geom. Theor. Appl. 27, 237–255 (2004)

    MATH  Google Scholar 

  7. Fiedler, M.: Special Matrices and Their Applications in Numerical Mathematics. Martinus Nijhoff Publishers, Dordrecht (1986)

    MATH  Google Scholar 

  8. Hannukainen, A., Korotov, S., Vejchodský, T.: Discrete maximum principle for FE-solutions of the diffusion-reaction problem on prismatic meshes. J. Comput. Appl. Math. 226, 275–287 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Karátson, J., Korotov, S., Křížek, M.: On discrete maximum principles for nonlinear elliptic problems. Math. Comput. Simulation 76, 99–108 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kopczyński, E., Pak, I., Przytycki, P.: Acute triangulations of polyhedra and R n. arXiv: 0909.3706 (2009)

    Google Scholar 

  11. Korotov, S., Křížek, M.: Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J. Numer. Anal. 39, 724–733 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Korotov, S., Křížek, M., Neittaanmäki, P.: Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comp. 70, 107–119 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Křížek, M.: There is no face-to-face partition of R 5 into acute simplices. Discrete Comput. Geom. 36, 381–390 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lin Qun: Tetrahedral or cubic mesh? In: Proc. Finite element methods (Jyväskylä, 2000), 160–182, GAKUTO Internat. Ser. Math. Sci. Appl., 15, Gakkotosho, Tokyo, 2001

    Google Scholar 

  15. Rivara M.-C.: Lepp-bisection algorithms, applications and mathematical properties. Appl. Numer. Math. 59, 2218–2235 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Šolín, P., Červený, J., Doležel, I.: Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM. Math. Comput. Simulation 77, 117–132 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Üngör, A.: Tiling 3D Euclidean space with acute tetrahedra. In: Proc. Canadian Conf. Comput. Geom., Waterloo, 169–172 (2001)

    Google Scholar 

  18. VanderZee, E., Hirani, A.N., Zharnitsky, V., Guoy, D.: A dihedral acute triangulation of the cube. arXiv:0905.3715 (2009)

    Google Scholar 

  19. Wieners, C.: Conforming discretizations on tetrahedrons, pyramids, prisms and hexahedrons. Univ. Stuttgart, Bericht 97/15, 1–9 (1997)

    Google Scholar 

  20. Zhang, S.: Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes. Houston J. Math. 21, 541–556 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Korotov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korotov, S., Vejchodský, T. (2010). A Comparison of Simplicial and Block Finite Elements. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds) Numerical Mathematics and Advanced Applications 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11795-4_57

Download citation

Publish with us

Policies and ethics