Skip to main content

New Perspectives in Fluid Dynamics: Mathematical Analysis of a Model Proposed by Howard Brenner

  • Chapter
New Directions in Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

We study a model of a compressible, viscous and heat conducting fluid proposed in a series of papers by Howard Brenner. We show that the corresponding system of partial differential equations possesses global-in-time weak solutions for any finite energy initial data. In addition, the density of the fluid remains positive a.a. in the physical domain on any finite time interval.

The work of E.F. was supported by Grant 201/08/0315 of GA ČR as a part of the general research programme of the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503.

The work of A.V. was partially supported by the general research programme of the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503., and by the NSF Grant DMS 0607953.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Amann. Maximal regularity for nonautonomous evolution equations. Adv. Non-linear Studies, 4:417–430, 2004.

    MATH  MathSciNet  Google Scholar 

  2. H. Amann. Maximal regularity and quasilinear parabolic boundary value problems. In: G.-G. Chen, M. Chipot, G.-S.Lin (editors): Recent advances in elliptic and parabolic problems, Proc. Int. Conf. Hsinchu Taiwan 2004, World Scientific, pages 1–17, 2005.

    Google Scholar 

  3. H. Brenner. Kinematics of volume transport. Phys. A, 349:11–59, 2005.

    Article  MathSciNet  Google Scholar 

  4. H. Brenner. Navier-Stokes revisited. Phys. A, 349(l–2):60–132, 2005.

    MathSciNet  Google Scholar 

  5. H. Brenner. Fluid mechanics revisited. Phys. A, 370:190–224, 2006.

    Article  MathSciNet  Google Scholar 

  6. D. Bresch and B. Desjardins. Stabilité de solutions faibles globales pour les équations de Navier-Stokes compressibles avec température. GR. Acad. Sci. Paris, 343:219–224, 2006.

    MATH  MathSciNet  Google Scholar 

  7. D. Bresch and B. Desjardins. On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appi, 87:57–90, 2007.

    MATH  MathSciNet  Google Scholar 

  8. P.W. Bridgeman. The physics of high pressure. Dover Publ., New York, 1970.

    Google Scholar 

  9. E. Feireisl. Dynamics of viscous compressible fluids. Oxford University Press, Oxford, 2003.

    Book  Google Scholar 

  10. E. Feireisl. Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl, 53:461–490, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Gallavotti. Statistical mechanics: A short treatise. Springer-Verlag, Heidelberg, 1999.

    MATH  Google Scholar 

  12. C.J. Greenshields and J.M. Reese. The structure of shock waves as a test of Brenner’s modifications to the Navier-Stokes equations. J. Fluid Mechanics, 580:407–439, 2007.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. E. Hopf. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr., 4:213–231, 1951.

    MATH  MathSciNet  Google Scholar 

  14. A.S. Kazhikhov and S. Smagulov. The correctness of boundary value problems in a certain diffusion model of an incompressible fluid (in Russian), Čisl. Metody Meh. Sploš Sredy 7:75–92, 1976.

    Google Scholar 

  15. I. Klimontovich, Yu. Statistical theory of open systems, vol. I: A unified approach to kinetic descriptions of processes in active systems. Kluwer Academic Publishers, Dordrecht, 1995.

    Google Scholar 

  16. O.A. Ladyzhenskaya. The mathematical theory of viscous incompressible flow. Gordon and Breach, New York, 1969.

    MATH  Google Scholar 

  17. J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63:193–248, 1934.

    Article  MATH  MathSciNet  Google Scholar 

  18. P.-L. Lions. Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford, 1998.

    Google Scholar 

  19. A. Mellet and A. Vasseur. On barotropic compressible Navier-Stokes equations. Commun. Partial Differential Equations, 32:431–452, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  20. H.C. Ottinger. Beyond equilibrium thermodynamics. Wiley, New Jersey, 2005.

    Book  Google Scholar 

  21. V.A. Vaigant and A.V. Kazhikhov. On the existence of global solutions to two-dimensional Navier-Stokes equations of a compressible viscous fluid (in Russian). Sibirskij Mat. Z., 36(6):1283–1316, 1995.

    MathSciNet  Google Scholar 

  22. Y.B. Zel’dovich and Y.P. Raizer. Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press, New York, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Feireisl, E., Vasseur, A. (2009). New Perspectives in Fluid Dynamics: Mathematical Analysis of a Model Proposed by Howard Brenner. In: Fursikov, A.V., Galdi, G.P., Pukhnachev, V.V. (eds) New Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0152-8_9

Download citation

Publish with us

Policies and ethics