Skip to main content
Log in

A critical oscillation constant as a variable of time scales for half-linear dynamic equations

  • Published:
Mathematica Slovaca

Abstract

We present criteria of Hille-Nehari type for the half-linear dynamic equation (r(t)Φ(y Δ))Δ+p(t)Φ(y σ) = 0 on time scales. As a particular important case we get that there is a a (sharp) critical constant which may be different from what is known from the continuous case, and its value depends on the graininess of a time scale and on the coefficient r. As applications we state criteria for strong (non)oscillation, examine generalized Euler type equations, and establish criteria of Kneser type. Examples from q-calculus, a Hardy type inequality with weights, and further possibilities for study are presented as well. Our results unify and extend many existing results from special cases, and are new even in the well-studied discrete case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AGARWAL, R. P.— BOHNER, M.— GRACE, S. R.— O’REGAN, D.: Discrete Oscillation Theory, Hindawi, New York, NY, 2005.

    Book  MATH  Google Scholar 

  2. AGARWAL, P. R.— BOHNER, M.— ŘEHÁK, P.: Half-linear dynamic equations on time scales: IVP and oscillatory properties. In: Nonlinear Analysis and Applications: To V. Lakshmikantham on his 80th Birthday, Vol. I (R. P. Agarwal, D. O’Regan, eds), Kluwer Academic Publishers, Dordrecht, 2003, pp. 1–56.

    Google Scholar 

  3. BOHNER, M.— PETERSON, A. C.: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.

    MATH  Google Scholar 

  4. BOHNER, M.— PETERSON, A.: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.

    MATH  Google Scholar 

  5. BOHNER, M.— SAKER, S. H.: Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math. 34 (2004), 1239–1254.

    Article  MATH  MathSciNet  Google Scholar 

  6. BOHNER, M.— ÜNAL, M.: Kneser’s theorem in q-calculus, J. Phys. A 38 (2005), 6729–6739.

    Article  MATH  MathSciNet  Google Scholar 

  7. DOŠLÝ, O.— ŘEHÁK, P.: Nonoscillation criteria for second order half-linear difference equations, Comput. Math. Appl. 42 (2001), 453–464.

    Article  MATH  MathSciNet  Google Scholar 

  8. DOŠLÝ, O.— ŘEHÁK, P.: Half-linear Differential Equations, Elsevier, North Holland, 2005.

    MATH  Google Scholar 

  9. ELBERT, Á.: A half-linear second order differential equation, Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.

    Google Scholar 

  10. ERBE, L. H.— HILGER, S.: Sturmian theory on measure chains, Differential Equations Dynam. Systems 1 (1993), 223–244.

    MATH  MathSciNet  Google Scholar 

  11. ERBE, L. H.— PETERSON, A. C.— ŘEHÁK, P.: Integral comparison theorems for second order linear dynamic equations. In: Difference Equations, Special Functions and Orthogonal Polynomials. Proceedings of the International Conference, Munich, Germany, July 25–30, 2005 (Elaydi, S. et al., eds.) World Scientific, Hackensack, NJ, 2007, pp. 497–506.

    Chapter  Google Scholar 

  12. HILGER, S.: Analysis on measure chains — a unified approach to continuous and discrete calculus, Res. Math. 18 (1990), 18–56.

    MATH  MathSciNet  Google Scholar 

  13. HILSCHER, R.: A time scales version of a Wirtinger type inequality and applications, J. Comput. Appl. Math. 141 (2002), 219–226.

    Article  MATH  MathSciNet  Google Scholar 

  14. HOSHINO, H.— IMABAYASHI, R.— KUSANO, T.— TANIGAWA, T.: On second-order half-linear oscillations, Adv. Math. Sci. Appl. 8 (1998), 199–216.

    MATH  MathSciNet  Google Scholar 

  15. LI, H. J.— YEH, C. C.: Existence of positive nondecreasing solutions of nonlinear difference equations, Nonlinear Anal. 22 (1994), 1271–1284.

    Article  MATH  MathSciNet  Google Scholar 

  16. MINGARELLI, A. B.: Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Expressions. Lecture Notes in Math. 989, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.

    MATH  Google Scholar 

  17. MIRZOV, J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems, J. Math. Anal. Appl. 53 (1976), 418–425.

    Article  MATH  MathSciNet  Google Scholar 

  18. NEHARI, Z.: Oscillation criteria for second-order linear differential equations, Trans. Amer. Math. Soc. 85 (1957), 428–445.

    Article  MATH  MathSciNet  Google Scholar 

  19. ŘEHÁK, P.: Oscillatory properties of second order half-linear difference equations, Czechoslovak Math. J. 51 (2001), 303–321.

    Article  MATH  MathSciNet  Google Scholar 

  20. ŘEHÁK, P.: Half-linear dynamic equations on time scales: IVP and oscillatory properties, Nonlinear Funct. Anal. Appl. 7 (2002), 361–404.

    MATH  MathSciNet  Google Scholar 

  21. ŘEHÁK, P.: Hardy inequality on time scales and its application to half-linear dynamic equations, Arch. Inequal. Appl. 2005 (2005), 495–507.

    Article  MATH  Google Scholar 

  22. ŘEHÁK, P.: Function sequence technique for half-linear dynamic equations on time scales, Panamer. Math. J. 16 (2006), 31–56.

    MATH  MathSciNet  Google Scholar 

  23. ŘEHÁK, P.: How the constants in Hille-Nehari theorems depend on time scales, Adv. Difference Equ. 2006 (2006), 1–15.

    Google Scholar 

  24. SWANSON, C. A.: Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York, 1968.

    MATH  Google Scholar 

  25. WILLETT, D.: Classification of second order linear differential equations with respect to oscillation, Adv. Math. 3 (1969), 594–623.

    Article  MATH  MathSciNet  Google Scholar 

  26. ZHANG, G.— CHENG, S. S.: A necessary and sufficient oscillation for the discrete Euler equation, Panamer. Math. J. 9 (1999), 29–34.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Řehák.

Additional information

Communicated by Michal Fečkan

Supported by the Grants KJB100190701 of the Grant Agency of ASCR and 201/07/0145 of the Czech Grant Agency, and by the Institutional Research Plan AV0Z010190503.

About this article

Cite this article

Řehák, P. A critical oscillation constant as a variable of time scales for half-linear dynamic equations. Math. Slovaca 60, 237–256 (2010). https://doi.org/10.2478/s12175-010-0009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s12175-010-0009-7

2000 Mathematics Subject Classification

Keywords

Navigation