Skip to main content
Log in

Decomposition and Precipitation Process During Thermo-mechanical Fatigue of Duplex Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The so-called 748 K (475 °C) embrittlement is one of the main drawbacks for the application of ferritic-austenitic duplex stainless steels (DSS) at higher temperatures caused by a spinodal decomposition of the ferritic phase. Thermo-mechanical fatigue tests performed on a DSS in the temperature range between 623 K and 873 K (350 °C and 600 °C) revealed no negative influence on the fatigue lifetime. However, an intensive subgrain formation occurred in the ferritic phase, which was accompanied by formation of fine precipitates. In order to study the decomposition process of the ferritic grains due to TMF testing, detailed investigations using scanning and transmission electron microscopy are presented. The nature of the precipitates was determined as the cubic face centered G-phase, which is characterized by an enrichment of Si, Mo, and Ni. Furthermore, the formation of secondary austenite within ferritic grains was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. [1] D. Chandra and L.H. Schwartz: Metallurgical Transactions, 1971, vol. 2, pp. 511–519.

    Article  Google Scholar 

  2. [2] P. J. Grobner: Metallurgical Transactions, 1973, vol. 4, pp. 251–260.

    Article  Google Scholar 

  3. [3] H.D. Solomon and L. M. Levinson: Acta Metall., 1978, vol. 26, pp. 429–442.

    Article  Google Scholar 

  4. [4] J.C. LaSalle and L.H. Schwartz: Acta Metall., 1986, vol. 34, pp. 989–1000.

    Article  Google Scholar 

  5. [5] F. Bley: Acta Metall Mater., 1992, vol. 40, pp. 1505–1517.

    Article  Google Scholar 

  6. [6] J.K. Sahu, U. Krupp, R.N. Ghosh, and H.-J. Christ: Fatigue Fract. Engng. Mater. Struct., 2009, vol. 33, pp. 77–86.

    Article  Google Scholar 

  7. [7] K. Park, J.C. LaSalles, L.H. Schwartz, and M. Kato: Acta Metall., 1986, vol. 34, pp. 1853–1865.

    Article  Google Scholar 

  8. [8] F. Danoix and P. Auger: Mater. Charact., 2000, vol. 44, pp. 177–201.

    Article  Google Scholar 

  9. [9] M.K. Miller, J.M. Hyde, M.G. Hetherington, A. Cerezo, G.D.W. Smith, and C.M. Elliott: Acta Metal Mater., 1995, vol. 43, pp. 3385–3401.

    Article  Google Scholar 

  10. [10] J. M. Hyde, M. K. Miller, M. G. Hetherington, A. Cerezo, G. D. W. Smith, and C. M. Elliott: Acta Metall. Mater., 1995, vol. 43, pp. 3403–3413.

    Article  Google Scholar 

  11. [11] J. M. Hyde, M. K. Miller, M. G. Hetherington, A. Cerezo, G. D. W. Smith, and C. M. Elliott: Acta Metall. Mater., 1995, vol. 43, pp. 3415–3426.

    Article  Google Scholar 

  12. [12] J.E. Brown and G.D.W. Smith: Surface Science, 1991, vol. 246, pp. 285–291.

    Article  Google Scholar 

  13. [13] F. Danoix, P. Auger, and D. Blavette: Microsc. Microanal., 2004, vol. 10, pp. 349–354.

    Article  Google Scholar 

  14. [14] C. Pareige, J. Emo, S. Saillet, C. Domain and P. Pareige: Journal of Nuclear Materials, 2015, vol. 465, pp. 383–389.

    Article  Google Scholar 

  15. [15] J. Zhou, J. Odqvist, M. Thuvander, S. Hertzman, and P. Hedströma: Acta Mater., 2012, vol. 60, pp. 5818–5827.

    Article  Google Scholar 

  16. [16] Wei-Ying Chen, Meimei Li, Xuan Zhang, M.A. Kirk, P.M. Baldo, and T. Lian: Journal of Nuclear Materials, 2015, vol. 464, pp. 185–192.

    Article  Google Scholar 

  17. [17] H.J. Beattie and F.L. Ver Snyder: Nature, 1956, vol. 178, pp. 208.

    Article  Google Scholar 

  18. [18] K. Fujii and K. Fukuya: Journal of Nuclear Materials, 2013, vol. 440, pp. 612–616.

    Article  Google Scholar 

  19. [19] J.M. Vitek, S.A. David, D.J. Alexander, J.R. Keiser and R.K. Nanstad: Acta Metall. Mater., 1991, vol. 39, pp. 503–516.

    Article  Google Scholar 

  20. [20] A. Mateo, L. Llanes, M. Anglada, A. Redjaimia, and G. Metauer: J. Mater. Sci., 1997, vol. 32, pp. 4533–4540.

    Article  Google Scholar 

  21. [21] S.S.M. Tavaresa, M.R. da Silva, and J.M. Neto: Journ. Alloys Comp., 2000, vol. 313, pp. 168–173.

    Article  Google Scholar 

  22. [22] S.S.M. Tavaresa, P.D.S. Pedrosa, J.R. Teodosio, M.R. da Silva, J.M. Neto, and S. Pairis: Journ. Alloys Comp., 2003, vol. 351, pp. 281–288.

    Google Scholar 

  23. [23] F.A. Adcock: Journ. Alloys Comp., 2000, vol. 313, pp. 168–173.

    Article  Google Scholar 

  24. [24] R.N. Gunn: Duplex stainless steels – Microstructure, properties and applications. Abington Publishing. Cambridge, UK (1997) pp. 35–49.

    Book  Google Scholar 

  25. [25] S. Degallaix, S. Seddouki, G. Degallaix, T. Kruml, and J. Polak: Fatigue Fract. Engng. Mater. Struct., 1995, vol. 18, pp. 65–77.

    Article  Google Scholar 

  26. [26] M.C. Marinelli, A.E. Bartali, J.W. Signorelli, P.Evrard, V. Aubin, I. Alvarez-Armas, and S. Degallaix-Moreuil: Mater. Sci. Eng. A, 2009, vol. 509, pp. 81–88.

    Article  Google Scholar 

  27. [27] A. Mateo, L. Llanes, L. Iturgoyens, and M. Anglada: Acta Mater., 1996, vol. 44, pp. 1143–1153.

    Article  Google Scholar 

  28. [28] T. Kruml, J. Polak, K. Obrtlik, and S. Degallaix: Acta Mater., 1997, vol. 45, pp. 5145–5151.

    Article  Google Scholar 

  29. [29] J. Polak and P. Zezulka: Fatigue Fract. Engng. Mater. Struct., 2005, vol. 28, pp. 923–935.

    Article  Google Scholar 

  30. [30] L. Llanes, A. Mateo, P. Violan, J. Mendez, and M. Anglada: Mater. Sci. and Eng. A, 1997, vol. 234-236, pp. 850–852.

    Article  Google Scholar 

  31. [31] J. Johansson and M. Oden: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1557–1570.

    Article  Google Scholar 

  32. [32] R. Lillbacka, G. Chai, M. Ekh, P. Liu, E. Johnson, and K. Runesson: Acta Mater., 2007, vol. 55, pp. 5359–5368.

    Article  Google Scholar 

  33. [33] N. Jia, R.L. Peng, G.C. Chai, S. Johansson, and Y.D.Wang: Mater. Sci. Eng. A, 2008, vol. 491, pp. 425–433.

    Article  Google Scholar 

  34. [34] S. Herenú, M. Sennour, M. Balbi, I. Alvarez-Armas, A. Thorel, and A.F. Armas: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7636–7640.

    Article  Google Scholar 

  35. [35] M. Nyström and B. Karlsson: Mater. Sci. Eng. A, 1996, vol. 215, pp.26–38.

    Article  Google Scholar 

  36. [36] F. Iacoviello, F. Casari, and S. Gialanella: Corrosion Science, 2005, vol. 47, pp. 909–922.

    Article  Google Scholar 

  37. [37] W. Horvath, W. Prantl, E. Werner, and H. R Stüwe: Mater. Charac., 1995, vol. 34, pp. 277–285.

    Article  Google Scholar 

  38. [38] H. Zaletelj, G. Fajdiga, and M. Nagode: Jour. Mech. Eng., 2011, vol. 57, pp. 485–494.

    Article  Google Scholar 

  39. [39] K. Rau, T. Beck, and D. Löhe: Mater. Sci. Eng. A, 2003, vol. 345, pp. 309–318.

    Article  Google Scholar 

  40. [40] R. Kolmorgen and H. Biermann: Intern. Jour. Fat., 2012, vol. 37, pp. 86–91.

    Article  Google Scholar 

  41. [41] J.S. Park and Y.K. Yoon: Scripta Metall. Mater.,1995, vol. 32, pp. 1163–1168.

    Article  Google Scholar 

  42. [42] R. Kolmorgen, A. Weidner, and H. Biermann: Mater. High Temp., 2013, vol. 30, pp. 77–82.

    Article  Google Scholar 

  43. D. Kulawinski, R. Kolmorgen, and H. Biermann: Steel Res. Int., 2016, DOI:10.1002/srin.201500410.

  44. [44] R. Kolmorgen and H. Biermann: Inter. Jour. Fat., 2014, vol. 65, pp. 2–8.

    Article  Google Scholar 

  45. P. Hähner, E. Affeldt, T. Beck, H. Klingelhöffer, M. Loveday, and C. Rinaldi: Code-of-Practice for Strain-Controlled Thermo-Mechanical Fatigue Testing, European Communities, 2006.

  46. R. Kolmorgen, S. Henkel, and H. Biermann: Proceedings of the 7th International Conference on Low Cycle Fatigue, Aachen, DVM (2013) ISBN: 978-3-9814516-2-7, pp. 197–202.

  47. [47] E. Arzt, and D.S. Wilkinson: Acta Metall., 1986, vol. 34, pp. 1893–1898.

    Article  Google Scholar 

  48. [48] G.V. Kurdjumov and G. Sachs: Z. Phys., 1930, vol. 32, pp. 325–43.

    Article  Google Scholar 

Download references

Acknowledgment

Funding of the present project by German Research Foundation (DFG, Bi 418/19-2) and Czech Science Foundation (15-08826S) is gratefully acknowledged. The research was partially conducted in CEITEC research infrastructure supported by the project CZ.1.05/1.1.00/02.0068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Weidner.

Additional information

Manuscript submitted October 2, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidner, A., Kolmorgen, R., Kubena, I. et al. Decomposition and Precipitation Process During Thermo-mechanical Fatigue of Duplex Stainless Steel. Metall Mater Trans A 47, 2112–2124 (2016). https://doi.org/10.1007/s11661-016-3392-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3392-z

Keywords

Navigation