Skip to main content
Log in

Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A quasi-static rate-independent model of delamination of linearly elastic bodies at small strains, sensitive to mode of delamination, using interfacial damage and interfacial plasticity as two internal parameters, is further developed with the aim to extract representations typically employed in engineering interface-models, i.e. fracture envelope and fracture energy dependence on the mode mixity, which are suitable for the model fitting to experimental data. Moreover, two concepts of solutions are implemented: globally stable energy-conserving solutions or stress-driven maximally-dissipative local solutions, arising by the fully implicit or by a semi-implicit time-stepping procedures, respectively, both yielding numerically stable and convergent time-discretizations. Spatial discretization is performed by the symmetric Galerkin boundary-element method (SGBEM). Alternating quadratic programming is implemented to cope with, respectively, global or local, energy-minimizations in the computation of the time-discretized solutions. Sample 2D numerical examples document applicability of the model as well as efficiency of the SGBEM numerical implementation and facilitate comparison of the two mentioned solution concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Methods Eng 68:542–582

    Article  MathSciNet  MATH  Google Scholar 

  2. Allix O, Feld N, Baranger E, Guimard J-M, Ha-Minh C (2014) The compressive behaviour of composites including fiber kinking: modelling across the scales. Meccanica. doi:10.1007/s11012-013-9872-y

  3. Banks-Sills L, Ashkenazi D (2000) A note on fracture criteria for interface fracture. Int J Fract 103:177–188

  4. Bartels S, Kružík M (2011) An efficient approach to the numerical solution of rate-independent problems with nonconvex energies. Multiscale Model Simul 9:1276–1300

    Article  MathSciNet  MATH  Google Scholar 

  5. Benešová B (2011) Global optimization numerical strategies for rate-independent processes. J Glob Optim 50:197–220

    Article  MATH  Google Scholar 

  6. Bonnet M (1995) Regularized direct and indirect symmetric variational BIE formulations for three-dimensional elasticity. Eng Anal Bound Elem 15:93–102

    Article  Google Scholar 

  7. Bonnet M, Maier G, Polizzotto C (1998) Symmetric Galerkin boundary element method. Appl Mech Rev 15:669–704

    Article  ADS  Google Scholar 

  8. Bourdin B (2007) Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound 9:411–430

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourdin B, Francfort A, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Bourdin B, Francfort A, Marigo JJ (2008) The variational approach to fracture. J Elasticity 91:5–148

    Article  MathSciNet  MATH  Google Scholar 

  11. Carpinteri A (1989) Cusp catastrophe interpretation of fracture instability. J Mech Phys Solids 37:567–582

    Article  MATH  ADS  Google Scholar 

  12. Carpinteri A, Cornetti P, Pugno N (2009) Edge debonding in FRP strengthtened beams; stress versus energy failure criteria. Eng Struct 21:2436–2447

    Article  Google Scholar 

  13. Cornetti P, Carpinteri A (2011) Modelling of FRP-concrete delamination by means of an exponentially softening law. Eng Struct 33:1988–2001

    Article  Google Scholar 

  14. Cornetti P, Mantič V, Carpinteri A (2012) Finite fracture mechanics at elastic interfaces. Int J Solids Struct 49:1022–1032

    Article  Google Scholar 

  15. Dal Maso G, Francfort GA, Toader R (2005) Quasistatic crack growth in nonlinear elasticity. Arch Rational Mech Anal 176:165–225

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Diaz-Diaz A, Caron J-F (2006) Interface plasticity and delamination onset prediction. Mech Mater 38:648–663

    Article  Google Scholar 

  17. Dostál Z (2009) Optimal quadratic programming algorithms. Springer, Berlin

    MATH  Google Scholar 

  18. Evans A, Rühle M, Dalgleish B, Charalambides P (1990) The fracture energy of bimaterial interfaces. Metall Trans A 21A:2419–2429

    Article  ADS  Google Scholar 

  19. Frémond M (1985) Dissipation dans l’adhérence des solides. CR Acad Sci Paris Ser II 300:709–714

    MATH  Google Scholar 

  20. Frémond M (2002) Non-smooth thermomechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  21. Giambanco G, Scimemi GF (2006) Mixed mode failure analysis of bonded joints with rate-dependent interface models. Int J Numer Methods Eng 67:1160–1192

    Article  MATH  Google Scholar 

  22. Grassl P, Rempling R (2008) A damage-plasticity interface approach to the meso-scale modelling of concrete subjected to cyclic compressive loading. Engng Fract Mech 75:4804–4818

  23. Hill R (1948) A variational principle of maximum plastic work in classical plasticity. Q J Mech Appl Math 1:18–28

    Article  MATH  Google Scholar 

  24. Hutchinson JW, Suo Z (1992) Mixed mode cracking in layered materials. Adv Appl Mech 29:63–191

    Article  MATH  Google Scholar 

  25. Kočvara M, Mielke A, Roubíček T (2006) A rate-independent approach to the delamination problem. Math Mech Solids 11:423–447

    Article  MathSciNet  MATH  Google Scholar 

  26. Kolluri M, Hoefnagels JPM, van Dommelen JAW, Geers MGD (2011) An improved miniature mixed-mode delamination setup for in situ microscopic interface failure analyses. J Phys D Appl Phys 44:034005

  27. Kolluri M, Hoefnagels JPM, van Dommelen JAW, Geers MGD (2013) A practical approach for the separation of interfacial toughness and structural plasticity in a delamination growth experiment. Int J Fract 183:1–18

    Article  Google Scholar 

  28. Lenci A (2001) Analysis of a crack at a weak interface. Int J Fract 108:275–290

    Article  Google Scholar 

  29. Liechti K, Chai Y (1992) Asymmetric shielding in interfacial fracture under in-plane sheare. J Appl Mech 59:295–304

    Article  Google Scholar 

  30. Mantič V (2008) Discussion on the reference length and mode mixity for a bimaterial interface. J Eng Mater Technol 130:045501-1-2

  31. Mantič V, Távara L, Blázquez A, Graciani E, París F (2013) Application of a linear elastic–brittle interface model to the crack initiation and propagation at fibre–matrix interface under biaxial transverse loads. ArXiv preprint. arXiv:1311.4596.

  32. Matzenmiller A, Gerlach S, Fiolka M (2010) A critical analysis of interface constitutive models for the simulation of delamination in composites and failure of adhesive bonds. J Mech Mater Struct 5:185–211

    Article  Google Scholar 

  33. Mielke A (2011) Differential, energetic and metric formulations for rate-independent processes. In: Ambrosio L, Savaré G (eds) Nonlinear PDEs and applications. Springer, Heidelberg, pp 87–170

  34. Mielke A, Roubíček T (2015) Rate-independent systems—theory and application. Applied Mathematical Sciences Series. Springer, New York (contracted)

  35. Mielke A, Theil F (2004) Mathematical model for rate-independent phase transformations with hysteresis. Nonlinear Differ Equ Appl 11:151–189

    Article  MathSciNet  MATH  Google Scholar 

  36. Mielke A, Roubíček T, Zeman J (2010) Complete damage in elastic and viscoelastic media and its energetics. Comput Methods Appl Mech Eng 199:1242–1253

    Article  MATH  ADS  Google Scholar 

  37. Moreo P, García-Aznar JM, Doblaré M (2007) A coupled viscoplastic rate-dependent damage model for the simulation of fatigue failure of cement-bone interfaces. Int J Plasticity 23:2058–2084

    Article  MATH  Google Scholar 

  38. Panagiotopoulos CG, Mantič V, Roubíček T (2013) BEM implementation of energetic solutions for quasistatic delamination problems. Comput Mech 51:505–521

    Article  MathSciNet  MATH  Google Scholar 

  39. París F, Cañas J (1997) Boundary element method. Fundamentals and applications. Oxford University Press, Oxford

    MATH  Google Scholar 

  40. Roubíček T (2009) Rate independent processes in viscous solids at small strains. Math Methods Appl Sci 32:825–862 (Erratum 2176)

    Article  MathSciNet  MATH  Google Scholar 

  41. Roubíček T (2013) Nonlinear partial differential equations with applications, 2nd edn. Birkhäuser, Basel

    Book  Google Scholar 

  42. Roubíček T (2013) Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J Math Anal 45:101–126

    Article  MathSciNet  MATH  Google Scholar 

  43. Roubíček T (submitted) Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problems. Nonlinear Anal

  44. Roubíček T, Mantič V, Panagiotopoulos C (2013) Quasistatic mixed-mode delamination model. Discr Contin Dyn Syst 6:591–610

    MATH  Google Scholar 

  45. Roubíček T, Panagiotopoulos C, Mantič V (2013) Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity. Z Angew Math Mech 93:823–840

    Article  MATH  Google Scholar 

  46. Roubíček T, Scardia T, Zanini C (2009) Quasistatic delamination problem. Contin Mech Thermodyn 21:223–235

    Article  MathSciNet  MATH  Google Scholar 

  47. Roubíček T, Kružík M, Zeman J (2014) Delamination and adhesive contact models and their mathematical analysis and numerical treatment. In: Mantič V (ed) Mathematical methods and models in composites. Imperial College Press, London, pp 349–400

    Google Scholar 

  48. Roubíček T, Panagiotopoulos C, Mantič V (submitted) Local-solution approach to quasistatic rate-independent mixed-mode delamination. Math Models Methods Appl Sci

  49. Sauter SA, Schwab C (2010) Boundary element methods. Springer, Berlin

    Google Scholar 

  50. Scheider I (2009) Derivation of separation laws for cohesive models in the course of ductile fracture. Eng Fract Mech 76:1450–1459

    Article  Google Scholar 

  51. Scheider I, Mosler J (2011) Novel approach for the treatment of cyclic loading using a potential-based cohesive zone model. Procedia Eng 10:2164–2169

    Article  Google Scholar 

  52. Sirtori S (1979) General stress analysis by means of integral equations and boundary elements. Meccanica 14:210–218

    Article  MATH  Google Scholar 

  53. Sirtori S, Miccoli S, Korach E (1993) Symmetric coupling of finite elements and boundary elements. In: Kane JH, Maier G, Tosaka N, Atluri SN (eds) Advances in boundary element techniques. Springer, Berlin, pp 407–427

  54. Snozzi L, Molinari J-F (2013) A cohesive element model for mixed mode loading with frictional contact capability. Int J Numer Methods Eng 93:510–526

    Article  MathSciNet  Google Scholar 

  55. Spada A, Giambanco G, Rizzo P (2009) Damage and plasticity at the interfaces in composite materials and structures. Comput Methods Appl Mech Eng 198:3884–3901

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. Stefanelli U (2009) A variational characterization of rate-independent evolution. Math Nach 282:1492–1512

    Article  MathSciNet  MATH  Google Scholar 

  57. Sutradhar A, Paulino GH, Gray LJ (2008) The symmetric Galerkin boundary element method. Springer, Berlin

    Google Scholar 

  58. Swadener J, Liechti K, deLozanne A (1999) The intrinsic toughness and adhesion mechanism of a glass/epoxy interface. J Mech Phys Solids 47:223–258

    Article  MATH  ADS  Google Scholar 

  59. Távara L, Mantič V, Graciani E, París F (2011) BEM analysis of crack onset and propagation along fiber–matrix interface under transverse tension using a linear elastic-brittle interface model. Eng Anal Bound Elem 35:207–222

    Article  MathSciNet  MATH  Google Scholar 

  60. Toader R, Zanini C (2009) An artificial viscosity approach to quasistatic crack growth. Boll Unione Matem Ital 2:1–36

    MathSciNet  MATH  Google Scholar 

  61. Vodička R, Mantič V, París F (2007) Symmetric variational formulation of BIE for domain decomposition problems in elasticity—an SGBEM approach for nonconforming discretizations of curved interfaces. CMES Comput Model Eng 17:173–203

    MATH  Google Scholar 

  62. Vodička R, Mantič V, París F (2011) Two variational formulations for elastic domain decomposition problems solved by SGBEM enforcing coupling conditions in a weak form. Eng Anal Bound Elem 35:148–155

    Article  MathSciNet  MATH  Google Scholar 

  63. Xu Q, Lu Z (2013) An elastic–plastic cohesive zone model for metal-ceramic interfaces at finite deformations. Int J Plasticity 41:147–164

    Article  Google Scholar 

  64. Ziegler H (1958) An attempt to generalize Onsager’s principle, and its significance for rheological problems. Z Angew Math Phys 9b:748–763

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are indebted to an anonymous reviewer for many useful suggestions that improved the presentation in particular aspects. A part of the work has been accomplished during the stages of R. V. and T. R. at Universidad de Sevilla whose hospitality is acknowledged. Moreover, the authors acknowledge the support from the Spanish Ministry of Education (Ref. SAB2010-0082) and Spanish Ministry of Economy and Competitiveness (Project MAT2012-37387), from the Junta de Andalucía and European Social Fund through the Project of Excellence P08-TEP-04051, from the Slovak Ministry of Education through the grant 1/0201/11 (VEGA), as well as from the Czech Republic through the grants 201/10/0357, 201/12/0671, and 105/13/18652S (GA ČR), together with the institutional support RVO: 61388998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Vodička.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodička, R., Mantič, V. & Roubíček, T. Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model. Meccanica 49, 2933–2963 (2014). https://doi.org/10.1007/s11012-014-0045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0045-4

Keywords

Navigation