Skip to main content
Log in

On the Oseen–Brinkman flow around an \((m-1)\)-dimensional solid obstacle

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The purpose of this paper is to develop a layer potential analysis in order to show the well-posedness result of a transmission problem for the Oseen and Brinkman systems in open sets in \({\mathbb R}^m\) (\(m\in \{2,3\}\)) with compact Lipschitz boundaries and around a lower dimensional solid obstacle, when the boundary data belong to some \(L^q\)-spaces. If \(m=3\) or if the Brinkman system is given on bounded open set then there exists a solution of the transmission problem for arbitrary data. If \(m=2\) and the Brinkman system is given on exterior open set then necessary and sufficient conditions for the existence of a solution of the transmission problem are stated. A solution of the transmission problem is not unique. All solutions of the problem are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(\partial ^\beta \) means the differential operator of order \(\beta \), \(\partial ^\beta :=\frac{\partial ^{|\beta |}}{\partial ^{\beta _1}\ldots \partial ^{\beta _m}}\), where \(\beta =(\beta _1,\ldots ,\beta _m)\) and \(|\beta |=\beta _1+\cdots +\beta _m\).

  2. The conormal derivatives below exist a.e. on \(\partial \Omega \) and are understood in the sense of nontangential limits.

References

  1. Buchukuri, T., Chkadua, O., Duduchava, R., Natroshvili, D.: Interface crack problmes for metallic-piezoelectric composite structure. Mem. Differ. Equ. Math. Phys. 55, 1–150 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Chkadua, O., Mikhailov, S.E., Natroshvili, D.: Localized boundary-domain singular integral equations based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients. Integr. Equ. Oper. Theory 76, 509–547 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chkadua, O., Mikhailov, S.E., Natroshvili, D.: Localized direct segregated boundary-domain integral equations for variable coefficient transmission problems with interface crack. Mem. Differ. Equ. Math. Phys. 52, 17–64 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Chkadua, O., Mikhailov, S.E., Natroshvili, D.: Analysis of segregated boundary-domain integral equations for variable-coefficient problems with cracks. Numer. Methods PDE 27, 121–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costabel, M., Dauge, M.: Crack singularities for general elliptic systems. Math. Nachr. 235, 29–49 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Sciences and Technology. Physical Origins and Classical Methods, vol. 1. Springer, Berlin (1990)

    MATH  Google Scholar 

  8. Dindoš, M., Mitrea, M.: The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and \(C^1\) domains. Arch. Ration. Mech. Anal. 174, 1–47 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Escauriaza, L., Mitrea, M.: Transmission problems and spectral theory for singular integral operators on Lipschitz domains. J. Funct. Anal. 216, 141–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fabes, E., Kenig, C., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fenyö, S., Stolle, H.W.: Theorie und Praxis der linearen Integralgleichungen 1–4. VEB Deutscher Verlag der Wissenschaften, Berlin (1982)

    Book  MATH  Google Scholar 

  12. Fischer, T.M., Hsiao, G.C., Wendland, W.L.: Singular perturbations for the exterior three-dimensional slow viscous flow problem. J. Math. Anal. Appl. 110, 583–603 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations I, Linearised Steady Problems. Springer Tracts in Natural Philosophy, vol. 38. Springer, Berlin (1998)

    Google Scholar 

  14. Gutt, R., Kohr, M., Pintea, C., Wendland, W.L.: On the transmission problems for the Oseen and Brinkman systems on Lipschitz domains in compact Riemanian manifolds. Math. Nachr. 1–14. doi:10.1002/mana.201400365 (2015)

  15. Hsiao, G.C., MacCamy, R.C.: Singular perturbations for the two-dimensional viscous flow problem, pp. 229–244. Springer, Berlin (1982)

    MATH  Google Scholar 

  16. Hsiao, G.C., Stephan, E.P., Wendland, W.L.: On the Dirichlet problem in elasticity for a domain exterior to an arc. J. Comput. Appl. Math. 34, 1–19 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations: Variational Methods. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  18. Kenig, C.E.: Weighted \(H^p\) spaces on Lipschitz domains. Am. J. Math. 102, 129–163 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38, 1123–1171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Boundary value problems of Robin type for the Brinkman and Darcy–Forchheimer–Brinkman systems in Lipschitz domains. J. Math. Fluid Mech. 16, 595–630 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Poisson problems for semilinear Brinkman systems on Lipschitz domains in \({\mathbb{R}}^n\). Z. Angew. Math. Phys. 66, 833–864 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: On the Robin-transmission boundary value problems for the nonlinear Darcy–Forchheimer–Brinkman and Navier–Stokes systems. J. Math. Fluid Mech. 18, 293–329 (2016)

  23. Kohr, M., Pintea, C., Wendland, W.L.: Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman operators. Int. Math. Res. Not. 19, 4499–4588 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Kohr, M., Pop, I.: Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press, Southampton (2004)

    MATH  Google Scholar 

  25. Krutitskii, P.A.: The jump problem for the Laplace equation. Appl. Math. Lett. 14, 353–358 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krutitskii, P.A.: Explicit solution of the jump problem for the Laplace equation and singularities at the edges. Math. Probl. Eng. 7, 1–13 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krutitskii, P.A.: The modified jump problem for the Laplace equation and singularities at the tips. J. Comput. Appl. Math. 183, 232–240 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Krutitskii, P.A., Medková, D.: The harmonic Dirichlet problem for cracked domain with jump conditions on cracks. Appl. Anal. 83, 661–671 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Krutitskii, P.A., Medková, D.: Neumann and Robin problems in a cracked domain with jump conditions on cracks. J. Math. Anal. Appl. 301, 99–114 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The inhomogenous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to \(VMO\). Funct. Anal. Appl. 43, 217–235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Medková, D.: Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system. Acta Appl. Math. 116, 281–304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Medková, D.: \(L^q\)-solution of the Robin problem for the Oseen system. Acta Appl. Math. 142, 61–79 (2016). doi:10.1007/s10440-015-0014-5

  33. Medková, D.: Transmission problem for the Brinkman system. Complex Var. Elliptic Equ. 59, 1664–1678 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Medková, D., Varnhorn, W.: Boundary value problems for the Stokes equations with jumps in open sets. Appl. Anal. 87, 829–849 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mikhailov, S.E.: Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Anal. Appl. 378, 324–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mitrea, D.: A generalization of Dahlberg’s theorem concerning the regularity of harmonic Green potentials. Trans. Am. Math. Soc. 360, 3771–3793 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mitrea, D., Mitrea, M., Qiang, S.: Variable coefficient transmission problems and singular integral operators on non-smooth manifolds. J. Integral Equ. Appl. 18, 361–397 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mitrea, M., Taylor, M.: Navier-Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mitrea, M., Wright, M., Société mathématique de France.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. In: Astérisque, vol. 344. Societé mathématique de France, Paris (2012)

  40. Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  41. Pouya, A.: Minh-Ngoc Vu: Numerical modelling of steady-state flow in \(2D\)-cracked anisotropic porous media by singular integral equations method. Transp. Porous Med. 93, 475–493 (2012)

    Article  MathSciNet  Google Scholar 

  42. Russo, R., Simader, ChG: A note on the existence of solutions to the Oseen system in Lipschitz domains. J. Math. Fluid Mech. 8, 64–76 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schechter, M.: Principles of Functional Analysis. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  44. Stein, E.M.: Harmonic Analysis. Orthogonality, and Oscilatory Integrals, Real-Variable Methods. Princeton Univ. Press, Princeton (1993)

    Google Scholar 

  45. Stephan, E.P.: A boundary integral equation method for three-dimensional crack problems in elasticity. Math. Methods Appl. Sci. 8, 603–623 (1986)

    Article  MathSciNet  Google Scholar 

  46. Stephan, E.P.: Boundary integral equations for screen problems in \({\mathbb{R}}^3\). Integr. Equ. Oper. Theory 10, 236–257 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  47. Varnhorn, W.: The Stokes Equations. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

  48. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wendland, W.L., Stephan, E.P.: A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Ration. Mech. Anal. 112, 363–390 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wendland, W.L., Zhu, J.: The boundary element method for three-dimensional Stokes flows exterior to an open surface. Math. Comput. Model. 15, 19–41 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of Mirela Kohr was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0994. The work of Dagmar Medková was supported by RVO: 67985840 and GAČR Grant No. 16-03230S. The work of Wolfgang L. Wendland was supported by the SimTech Cluster of Excellence at the University Stuttgart, and he also gratefully acknowledges advice by Professor Rainer Helmig. Part of this work was done in 2014, when Mirela Kohr visited the Department of Mathematics of the University of Toronto. She is grateful to the members of this department for their hospitality during that visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Medková.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohr, M., Medková, D. & Wendland, W.L. On the Oseen–Brinkman flow around an \((m-1)\)-dimensional solid obstacle. Monatsh Math 183, 269–302 (2017). https://doi.org/10.1007/s00605-016-0981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-016-0981-2

Keywords

Mathematics Subject Classification

Navigation