Skip to main content
Log in

A Spectral Criterion for Stability of a Steady Viscous Incompressible Flow Past an Obstacle

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We show that the question of stability of a steady incompressible Navier-Stokes flow \({\mathrm{V}}\) in a 3D exterior domain \({\Omega}\) is essentially a finite-dimensional problem (Theorem 3.2). Although the associated linearized operator has an essential spectrum touching the imaginary axis, we show that certain assumptions on the eigenvalues of this operator guarantee the stability of flow \({\mathrm{V}}\) (Theorem 4.1). No assumption on the smallness of the steady flow \({\mathrm{V}}\) is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko K.I.: Spectrum of the linearized problem of flow of a viscous incompressible liquid round a body. Sov. Phys. Dokl. 27, 25–27 (1982)

    ADS  MATH  Google Scholar 

  2. Borchers W., Miyakawa T.: \({L^2}\)-decay for Navier-Stokes flows in unbounded domains, with application to exterior stationary flows. Arch. Rat. Mech. Anal. 118, 273–295 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borchers W., Miyakawa T.: On stability of exterior stationary Navier-Stokes flows. Acta Math. 174, 311–382 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deuring P., Neustupa J.: An eigenvalue criterion for stability of a steady Navier-Stokes flow in \({\mathbb{R}^3}\). J. Math. Fluid Mech. 12, 202–242 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Farwig R.: The stationary Navier-Stokes equations in a 3D-exterior domain. Lect. Notes Num. Appl. Anal. 16, 53–115 (1998)

    MathSciNet  Google Scholar 

  6. Farwig R., Neustupa J.: On the spectrum of a Stokes-type operator arising from flow around a rotating body. Manuscripta Mathematica 122, 419–437 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farwig R., Neustupa J.: On the spectrum of an Oseen-type operator arising from flow past a rotating body. Integral Equ. Oper. Theory 62, 169–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farwig R., Neustupa J.: On the spectrum of an Oseen-type operator arising from fluid flow past a rotating body in \({L^q_{\sigma}(\Omega)}\). Tohoku Math. J. 62(2), 287–309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farwig R., Nečasová Š., Neustupa J.: Spectral analysis of a Stokes-type operator arising from flow around a rotating body. J. Math. Soc. Jpn. 63(1), 163–194 (2011)

    Article  MATH  Google Scholar 

  10. Finn R.: On the exterior stationary problem for the Navier-Stokes equations and associated perturbation problems. Arch. Rat. Mech. Anal. 19, 363–406 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galdi, G.P., Rionero, S.: Weighted Energy Methods in Fluid Dynamics and Elasticity. Lecture Notes in Mathematics vol 1134, Springer, Berlin (1985)

  12. Galdi G.P., Padula M.: A new approach to energy theory in the stability of fluid motion. Arch. Rat. Mech. Anal. 110, 187–286 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galdi G.P., Heywood J.G., Shibata Y.: On the global existence and convergence to steady state of Navier–Stokes flow past an obstacle that is started from rest. Arch. Rat. Mech. Anal. 138, 307–318 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems. 2nd edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  15. Galdi, G.P., Neustupa, J.: Stability of a steady flow past a rotating body. In: Proceedings of the International Conference on Mathematical Fluid Dynamics, Present and Future (to appear)

  16. Giga Y., Sohr H.: On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo, Sec.IA 36, 103–130 (1989)

    MathSciNet  Google Scholar 

  17. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol 840. Springer, Berlin (1981)

  18. Heywood J.G.: On stationary solutions of the Navier-Stokes equations as limits of nonstationary solutions. Arch. Rat. Mech. Anal. 37, 48–60 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heywood J.G.: The exterior nonstationary problem for the Navier-Stokes equations. Acta Math. 129, 11–34 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heywood J.G.: The Navier-Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  22. Kielhöfer H.: On the Lyapunov stability of stationary solutions of semilinear parabolic differential equations. J. Differ. Equ. 22, 193–208 (1976)

    Article  ADS  MATH  Google Scholar 

  23. Kobayashi T., Shibata Y.: On the Oseen equation in the three dimensional exterior domain. Math. Ann. 310, 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kozono H., Ogawa T.: On stability of Navier-Stokes flows in exterior domains. Arch. Rat. Mech. Anal. 128, 1–31 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kozono H., Yamazaki M.: On stability of small stationary solutions in Morrey spaces of the Navier-Stokes equations. Indiana Univ. Math. J. 44, 1307–1336 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kozono H., Yamazaki M.: On a large class of stable solutions to the Navier-Stokes equations in exterior domains. Math. Z. 228, 751–785 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions J.L., Magenes E.: Nonhomogeneous Boundary Value Problems and Applications I. Springer, New York (1972)

    Book  Google Scholar 

  28. Maremonti P.: Asymptotic stability theorems for viscous fluid motions in exterior domains. Rend. Sem. Mat. Univ. Padova 71, 35–72 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Masuda K.: On the stability of incompressible viscous fluid motions past objects. J. Math. Soc. Jpn. 27, 294–327 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miyakawa T.: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. 12, 115–140 (1982)

    MathSciNet  MATH  Google Scholar 

  31. Miyakawa T.: On \({L^1}\)-stability of stationary Navier-Stokes flows in \({\mathbb{R}^3}\). J. Math. Sci. Univ. Tokyo 4, 67–119 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Neustupa J.: Stabilizing influence of a skew-symmetric operator in semilinear parabolic equations. Rend. Mat. Sem. Univ. Padova 102, 1–18 (1999)

    MathSciNet  Google Scholar 

  33. Neustupa J.: Stability of a steady solution of a semilinear parabolic system in an exterior domain. Far East J. Appl. Math. 15, 307–324 (2004)

    MathSciNet  Google Scholar 

  34. Neustupa J.: Stability of a steady viscous incompressible flow past an obstacle. J. Math. Fluid Mech. 11, 22–45 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Sattinger D.H.: The mathematical problem of hydrodynamic stability. J. Math. Mech. 18, 797–817 (1970)

    MathSciNet  Google Scholar 

  36. Sazonov, L.I.: Justification of the linearization method in the flow problem. Izv. Ross. Akad. Nauk Ser. Mat. 58, 85–109 (1994) (Russian)

  37. Shibata Y.: On an exterior initial boundary value problem for Navier-Stokes equations. Q. Appl. Math. LVII 1, 117–155 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Neustupa.

Additional information

Communicated by G.P. Galdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neustupa, J. A Spectral Criterion for Stability of a Steady Viscous Incompressible Flow Past an Obstacle. J. Math. Fluid Mech. 18, 133–156 (2016). https://doi.org/10.1007/s00021-015-0239-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-015-0239-0

Mathematics Subject Classification

Keywords

Navigation