Skip to main content
Log in

Plasma Spraying of Silica-Rich Calcined Clay Shale

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Silica-rich clay shale is a viable candidate for replacement of mullite in many applications, especially when outstanding refractoriness and chemical resistance to various agents are desirable. In this contribution, instead of the commonly used synthetic mullite feedstock, the thermal stability of inexpensive calcined natural raw clay shale sprayed using water stabilized plasma system is reviewed. Phase stability and phase changes at elevated temperatures up to 1500 °C were studied by an array of experimental techniques ranging from measurements of thermal conductivity and the heat flow as functions of temperature, scanning electron microscopy, x-ray diffraction (XRD) of the annealed samples, and in situ high temperature XRD. The mostly amorphous as-sprayed coatings with less than 10 wt.% of mullite are temperature stable up to 800 °C and rapid crystallization occurs between 920 and 940 °C. Performed analyses gave evidence about the increase of mullite grain sizes for temperatures higher than 1200 °C and, moreover, certain saturation of crystallinity, not surpassing the threshold of 60 wt.% even for 1500 °C, is observed. The microstructure after annealing at 1500 °C is notable by clusters of fine needle-like mullite crystallites with sizes within the range of tens of nanometers in Si-rich amorphous matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Certificate of CLUZ given with the supplied powder.

References

  1. W.M.N. Nour and H.M. Awad, Effect of MgO on Phase Formation and Mullite Morphology of Different Egyptian Clays, J. Aust. Ceram. Soc., 2008, 44, p 27-37

    Google Scholar 

  2. H. Schneider, J. Schreuer, and B. Hildmann, Structure and Properties of Mullite: A Review, J. Eur. Ceram. Soc., 2008, 28, p 329-344

    Article  Google Scholar 

  3. P. Rohan, K. Neufuss, J. Matějíček, J. Dubský, L. Prchlík, and C. Holzgartner, Thermal and Mechanical Properties of Cordierite, Mullite and Steatite Produced by Plasma Spraying, Ceram. Int., 2004, 30, p 597-603

    Article  Google Scholar 

  4. P. Ramaswamy, S. Seetharamu, K.J. Rao, and K.B.R. Varma, Thermal Shock Characteristics of Plasma Sprayed Mullite Coatings, J. Therm. Spray Technol., 1998, 7, p 497-504

    Article  Google Scholar 

  5. G. Di Girolamo, C. Blasi, L. Pilloni, and M. Schioppa, Microstructural and Thermal Properties of Plasma Sprayed Mullite Coatings, Ceram. Int., 2010, 36, p 1389-1395

    Article  Google Scholar 

  6. K.N. Lee, R.A. Miller, and N.S. Jacobson, U.S. Patent No. 5 391 404, 21 Feb 1995

  7. K. Kokini, Y.R. Takeuchi, and B.D. Choules, Surface Thermal Cracking of Thermal Barrier Coatings Owing to Stress Relaxation: Zirconia vs. Mullite, Surf. Coat. Technol., 1996, 82, p 77-82

    Article  Google Scholar 

  8. E. Withey, Ch. Petorak, R. Trice, G. Dickinson, and T. Tailor, Design of 7 wt.% Y2O3-ZrO2/Mullite Plasma-Sprayed Composite Coatings for Increased Creep Resistance, J. Eur. Ceram. Soc., 2007, 27, p 4675-4683

    Article  Google Scholar 

  9. H. Salimijazi, M. Hosseini, J. Mostaghimi, L. Pershin, T.W. Coyle, H. Samadi, and A. Shafyei, Plasma Sprayed Coating Using Mullite and Mixed Alumina/Silica Powders, J. Therm. Spray Technol., 2012, 21, p 825-830

    Article  Google Scholar 

  10. Y. An, J. Chen, H. Zhou, and G. Liu, Microstructure and Thermal Cycle Resistance of Plasma Sprayed Mullite Coatings Made from Secondary Mullitized Natural Andalusite Powder, Surf. Coat. Technol., 2010, 205, p 1897-1903

    Article  Google Scholar 

  11. Supplier’s E-Booklet as of December 2013. http://www.cluz.cz/en/chamotte-general-information

  12. J.D.C. McConnell and S.G. Fleet, Electron Optical Study of the Thermal Decomposition of Kaolinite, Clay Miner., 1970, 8, p 279

    Article  Google Scholar 

  13. B. Sonuparlak, M. Sarikaya, and I.A. Aksay, Spinel Phase Formation During the 980 °C Exothermic Reaction in the Kaolinite-to-Mullite Reaction Series, J. Am. Ceram. Soc., 1987, 70, p 837-842

    Article  Google Scholar 

  14. M. Bellotto, A. Gualtieri, G. Artioli, and S.M. Clark, Kinetic Study of the Kaolinite-Mullite Reaction Sequence. Part I: Kaolinite Dehydroxylation, Phys. Chem. Miner., 1995, 22, p 207-214

    Article  Google Scholar 

  15. A. Gualtieri, M. Bellotto, G. Artioli, and S.M. Clark, Kinetic Study of the Kaolinite-Mullite Reaction Sequence. Part II: Mullite formation, Phys. Chem. Miner., 1995, 22, p 215-222

    Article  Google Scholar 

  16. T. Chráska, K. Neufuss, J. Dubský, P. Ctibor, and M. Klementova, Fabrication of Bulk Nanocrystalline Ceramic Materials, J. Therm. Spray Technol., 2008, 17, p 872-877

    Article  Google Scholar 

  17. T. Chráska, J. Hostomský, M. Klementová, and J. Dubský, Crystallization Kinetics of Amorphous Alumina-Zirconia-Silica Ceramics, J. Eur. Ceram. Soc., 2009, 29, p 3159-3165

    Article  Google Scholar 

  18. K. Neufuss and P. Chráska, Czech Republic Patent No. 283203, 25 Nov 1997

  19. K. Neufuss and P. Chráska, Czech Republic Patents No. 286735, 4 April 2000

  20. H. Ledbetter, S. Kim, and D. Balzar, Elastic Properties of Mullite, J. Am. Ceram. Soc., 1998, 81, p 1026

    Google Scholar 

  21. C.S. Ray and D.F. Ray, Nucleation and Crystallization in Glasses as Determined by DTA, Ceram. Trans., 1993, 30, p 207-233

    Google Scholar 

  22. B.R. Johnson, W.M. Kriven, and J. Schneider, Crystal Structure Development During Devitrification of Quenched Mullite, J. Eur. Ceram. Soc., 2001, 21, p 2541-2562

    Article  Google Scholar 

  23. H.E. Kissinger, Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis, J. Natl. Res. Bur. Stand., 1956, 57, p 217-221

    Article  Google Scholar 

  24. L.A. Aksay, D.M. Dabbs, and M. Sarikaya, Mullite for Structural, Electronic, and Optical Applications, J. Am. Ceram. Soc., 1991, 74, p 2343-2358

    Article  Google Scholar 

  25. I.A. Aksay and J.A. Pask, The Silica-Alumina System: Stable and Metastable Equilibria at 1.0 Atmosphere, Science, 1974, 183, p 69-71

    Article  Google Scholar 

Download references

Acknowledgments

J.D. and B.N. were supported by Grant GACR P107/12/1922 “Thermal Spray Processing of Nanocrystalline TBC” and Z.P. and P.Ch. by Grant GACR P108/12/1872 “Complex Functionally Graded Materials.” Discussion and help of B. Kolman, K. Neufuss, P. Roubíček, and J. Hostomský are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenek Pala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubský, J., Chráska, T., Pala, Z. et al. Plasma Spraying of Silica-Rich Calcined Clay Shale. J Therm Spray Tech 23, 732–741 (2014). https://doi.org/10.1007/s11666-014-0076-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0076-3

Keywords

Navigation