Skip to main content
Log in

Impact of Impurity Content on the Sintering Resistance and Phase Stability of Dysprosia- and Yttria-Stabilized Zirconia Thermal Barrier Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Dysprosia-stabilized zirconia (DySZ) is a promising candidate to replace yttria-stabilized zirconia (YSZ) as a thermal barrier coating due to its lower inherent thermal conductivity. It is also suggested in studies that DySZ may show greater stability to high temperature phase changes compared to YSZ, possibly allowing for coatings with extended lifetimes. Separately, the impurity content of YSZ powders has been proven to influence high-temperature sintering behavior. By lowering the impurity oxides within the spray powder, a coating more resistant to sintering can be produced. This study presents both high purity and standard purity dysprosia and YSZ coatings and their performance after a long heat treatment. Coatings were produced using powder with the same morphology and grain size; only the dopant and impurity content were varied. Samples have been heat treated for exposure times up to 400 h at a temperature of 1150 °C. Samples were measured for thermal conductivity to plot the evolution of coating thermal properties with respect to exposure time. Thermal conductivity has been compared to microstructure analysis and porosity measurement to track structural changes. Phase analysis utilizing x-ray diffraction was used to determine differences in phase degradation of the coatings after heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Mutasim and W. Brentnall, Thermal Barrier Coatings for Industrial Gas Turbine Applications: An Industrial Note, J. Therm. Spray Technol., 1997, 6, p 105-108

    Article  Google Scholar 

  2. D. Stöver and C. Funke, Directions of the Development of Thermal Barrier Coatings in Energy Applications, J. Mater. Process. Technol., 1999, 92-93, p 195-202

    Article  Google Scholar 

  3. F.O. Soechting, A Design Perspective on Thermal Barrier Coatings, J. Therm. Spray Technol., 1999, 8(4), p 505-511

    Article  Google Scholar 

  4. R. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  Google Scholar 

  5. I. Gurrappa and A. Sambasiva Rao, Thermal Barrier Coatings for Enhanced Efficiency of Gas Turbine Engines, Surf. Coat. Technol., 2006, 201(6), p 3016-3029

    Article  Google Scholar 

  6. R. Vaßen, F. Cernuschi, G. Rizzi, A. Scrivani, N. Markocsan, L. Östergren et al., Recent Activities in the Field of Thermal Barrier Coatings Including Burner Rig Testing in the European Union, Adv. Eng. Mater., 2008, 10(10), p 907-921

    Article  Google Scholar 

  7. R. Vassen, A. Stuke, and D. Stöver, Recent Developments in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186

    Article  Google Scholar 

  8. S. Bose and J. DeMasi-Marcin, Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney, J. Therm. Spray Technol., 1997, 6, p 99-104

    Article  Google Scholar 

  9. A. Bennett, F.C. Roriz, and A.B. Thakker, A Philosophy for Thermal Barrier Coating Design and Its Corroboration by 10 000 h Service Experience on RB211 Nozzle Guide Vanes, Surf. Coat. Technol., 1987, 32(1-4), p 359-375

    Article  Google Scholar 

  10. F. Cernuschi, L. Lorenzoni, S. Ahmaniemi, P. Vuoristo, and T. Mäntylä, Studies of the Sintering Kinetics of Thick Thermal Barrier Coatings by Thermal Diffusivity Measurements, J. Eur. Ceram. Soc., 2005, 25(4), p 393-400

    Article  Google Scholar 

  11. R. Dutton, R. Wheeler, and K.S. Ravichandran, Effect of Heat Treatment on the Thermal Conductivity of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2000, 9(2), p 204-209

    Article  Google Scholar 

  12. J.A. Thompson and T.W. Clyne, The Effect of Heat Treatment on the Stiffness of Zirconia Top Coats in Plasma-Sprayed TBCs, Acta Mater., 2001, 49(9), p 1565-1575

    Article  Google Scholar 

  13. J.R. Brandon and R. Taylor, Phase Stability of Zirconia-Based Thermal Barrier Coatings Part I. Zirconia-Yttria Alloys, J. Therm. Spray Technol., 1991, 46(1), p 75-90

    Google Scholar 

  14. S. Paul, A. Cipitria, I.O. Golosnoy, L. Xie, M.R. Dorfman, and T.W. Clyne, Effects of Impurity Content on the Sintering Characteristics of Plasma-Sprayed Zirconia, J. Therm. Spray Technol., 2007, 16(5-6), p 798-803

    Article  Google Scholar 

  15. L. Xie, M.R. Dorfman, A. Cipitria, S. Paul, I.O. Golosnoy, and T.W. Clyne, Properties and Performance of High-Purity Thermal Barrier Coatings, J. Therm. Spray Technol., 2007, 16(5), p 804-808

    Article  Google Scholar 

  16. R. Vaßen, N. Czech, W. Malléner, W. Stamm, and D. Stöver, Influence of Impurity Content and Porosity of Plasma-Sprayed Yttria-Stabilized Zirconia Layers on the Sintering Behaviour, Surf. Coat. Technol., 2001, 141(2-3), p 135-140

    Article  Google Scholar 

  17. F. Guo and P. Xiao, Effect of Fe2O3 Doping on Sintering of Yttria-Stabilized Zirconia, J. Eur. Ceram. Soc., 2012, 32(16), p 1464-4157

    Article  Google Scholar 

  18. S.A. Tsipas, Effect of Dopants on the Phase Stability of Zirconia-Based Plasma Sprayed Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2010, 30(1), p 61-72

    Article  Google Scholar 

  19. N. Curry, N. Markocsan, X.-H. Li, A. Tricoire, and M. Dorfman, Next Generation Thermal Barrier Coatings for the Gas Turbine Industry, J. Therm. Spray Technol., 2010, 20(1-2), p 108-115

    Article  Google Scholar 

  20. N. Markocsan, P. Nylen, and J. Wigren, Low Thermal Conductivity Coatings for Gas Turbine Applications, J. Therm. Spray Technol., 2007, 16(4), p 498-505

    Article  Google Scholar 

  21. R. Harnacha, P. Fauchais, and F. Nardou, Influence of Dopant on the Thermal Properties of Two Plasma-Sprayed Zirconia Coatings Part I: Relationship Between Powder Characteristics and Coating Properties, J. Therm. Spray Technol., 1996, 5(4), p 431-438

    Article  Google Scholar 

  22. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 77-91

    Article  Google Scholar 

  23. N. Curry and J. Donoghue, Evolution of Thermal Conductivity of Dysprosia Stabilised Thermal Barrier Coating Systems During Heat Treatment, Surf. Coat. Technol., 2012, 209, p 38-43

    Article  Google Scholar 

  24. N. Curry, N. Markocsan, L. Östergren, X.-H. Li, and M. Dorfman, Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2013, 22(1-2), p 864-872

    Article  Google Scholar 

  25. D. Zhu and R. Miller, Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings Under High Heat Flux Conditions, J. Therm. Spray Technol., 2000, 9(2), p 175-180

    Article  Google Scholar 

  26. S.A. Tsipas, I.O. Golosnoy, R. Damani, and T.W. Clyne, The Effect of a High Thermal Gradient on Sintering and Stiffening in the Top Coat of a Thermal Barrier Coating System, J. Therm. Spray Technol., 2004, 13(3), p 370-376

    Article  Google Scholar 

  27. D18 Committee, Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry [Internet], ASTM International, 2010, Available from http://www.astm.org/Standards/D4404.htm

  28. S. Diamond, Mercury Porosimetry: An Inappropriate Method for the Measurement of Pore Size Distributions in Cement-Based Materials, Cem. Concr. Res., 2000, 30(10), p 1517-1525

    Article  Google Scholar 

  29. R.E. Taylor, Thermal Conductivity Determinations of Thermal Barrier Coatings, Mater. Sci. Eng. A, 1998, 245(2), p 160-167

    Article  Google Scholar 

  30. S. Paul, A. Cipitria, S.A. Tsipas, and T.W. Clyne, Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilisers, Surf. Coat. Technol., 2009, 203(8), p 1069-1074

    Article  Google Scholar 

  31. A. Cipitria, I.O. Golosnoy, and T.W. Clyne, A Sintering Model for Plasma-Sprayed Zirconia TBCs. Part I: Free-Standing Coatings, Acta Mater., 2009, 57(4), p 980-992

    Article  Google Scholar 

  32. S. Paul, I.O. Golosnoy, A. Cipitria, T.W. Clyne, L. Xie, and M.R. Dorfman, Effect of Heat Treatment on Pore Architecture and Associated Property Changes in Plasma Sprayed TBCs. Thermal Spray 2007: Global Coating Solutions: Proceedings of the 2007 International Thermal Spray Conference, 2007, p 414-416

  33. J. Ilavsky, G.G. Long, A.J. Allen, and C.C. Berndt, Evolution of the Void Structure in Plasma-Sprayed YSZ Deposits During Heating, Mater. Sci. Eng. A, 1999, 272(1), p 215-221

    Article  Google Scholar 

  34. A. Bacciochini, F. Ben-Ettouil, E. Brousse, J. Ilavsky, G. Montavon, A. Denoirjean et al., Quantification of Void Networks of As-Sprayed and Annealed Nanostructured Yttria-Stabilized Zirconia (YSZ) Deposits Manufactured by Suspension Plasma Spraying, Surf. Coat. Technol., 2010, 205(3), p 683-689

    Article  Google Scholar 

  35. S. Stemmer, J. Vleugels, and O. Van Der Biest, Grain Boundary Segregation in High-Purity, Yttria-Stabilized Tetragonal Zirconia Polycrystals (Y-TZP), J. Eur. Ceram. Soc., 1998, 18(11), p 1565-1570

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Jönköping University for assistance with the thermal property evaluation. Thanks to Stefan Björklund for spraying of the experimental coatings. Thanks to Dr. Radek Musalek for helping to set up the collaboration work with IPP Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Curry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curry, N., Janikowski, W., Pala, Z. et al. Impact of Impurity Content on the Sintering Resistance and Phase Stability of Dysprosia- and Yttria-Stabilized Zirconia Thermal Barrier Coatings. J Therm Spray Tech 23, 160–169 (2014). https://doi.org/10.1007/s11666-013-0014-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-0014-9

Keywords

Navigation