Skip to main content
Log in

3D flow past transonic turbine cascade SE 1050 — Experiment and numerical simulations

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the inlet velocity profile on the flow structures in the interblade channel and on the flow field parameters at the cascade exit and to compare these findings to results of numerical simulations. Investigations of 3D flow past the cascade with non-uniform inlet velocity profile were carried out both experimentally and numerically at subsonic (M 2is = 0.8) and at transonic (M 2is = 1.2) regime at design angle of incidence. Experimental data was obtained using a traversing device with a five-hole conical probe. Numerically, the 3D flow was simulated by open source code OpenFOAM and in-house code. Analyses of experimental data and CFD simulations have revealed the development of distinctive vortex structures resulting from non-uniform inlet velocity profile. Origin of these structures results in increased loss of kinetic energy and spanwise shift of kinetic energy loss coefficient distribution. Differences found between the subsonic and the transonic case confirm earlier findings available in the literature. Results of CFD and experiments agree reasonably well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR :

aspect ratio (1)

c :

chord (m)

E :

specific total internal energy (J/kg)

h :

specific enthalpy (J/kg)

H :

specific total enthalpy (J/kg), shape parameter

k :

turbulent kinetic energy (m/s)2

L :

width of the test section (m)

M :

Mach number (1)

M*:

nondimensional velocity (related to the critical speed of sound) (1)

N :

number of blades (1)

o :

throat opening (m)

p :

static pressure (Pa)

p t :

total pressure (Pa)

s :

pitch (m)

u j :

components of velocity vector (m/s)

x :

coordinate (m)

y :

coordinate (m)

z :

coordinate (m)

α :

flow angle (°)

α eff :

effective thermal diffusivity (m2/s)

β :

metal angle (°)

γ :

stagger angle (°)

δ :

boundary layer thickness (m)

δ*:

boundary layer displacement thickness (m)

ζ :

kinetic energy loss coefficient (1)

ι:

incidence angle (°)

ρ :

density (kg/m3)

θ :

boundary layer momentum thickness (m) effective stress tensor including the viscous and

τ ij eff :

Reynolds stress tensors (Pa)

φ:

flow turning (°)

ω :

turbulent frequency (1/s)

1:

blade cascade inlet

2:

blade cascade outlet

is:

isentropic

ref:

reference value

References

  1. Sieverding, C. H.: Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages, ASME J. Turbomach., Vol. 107, pp.249–257, (1985).

    Google Scholar 

  2. Langston, L. S.: Secondary Flows in Axial Turbines — A Review, Annals of the New York Academy of Sciences, 943, pp.11–26, (2001).

    ADS  Google Scholar 

  3. Lampart, P.: Investigation of Endwall Flows and Losses in Axial Turbines. Part I. Formation of Endwall Flows and Losses, J. of Theoretical and Applied Mechanics, 47,2, pp.321–342, (Warsaw, 2009).

    Google Scholar 

  4. Hodson, H. P., Dominy, R. G.: The Off-Design Performance of a Low-Pressure Turbine Cascade, ASME J. Turbomach. Vol. 109, pp. 201–209, (1987).

    Article  Google Scholar 

  5. Moore, J., Shaffer, D. M., Moore, J. G.: Reynolds Stresses and Dissipation Mechanisms Downstream of a Turbine Cascade, ASME J. Turbomach. Vol. 109, pp. 258–267, (1987).

    Article  Google Scholar 

  6. Lampart, P.: Investigation of Endwall Flows and Losses in Axial Turbines. Part II. The Effect of Geometric and Flow Parameters, J. of Theoretical and Applied Mechanics, 47,4, pp.829–858, (Warsaw, 2009).

    Google Scholar 

  7. Perdichizzi, A.: Mach Number Effects on Secondary Flow Development Downstream of a Turbine Cascade, ASME J. Turbomach., Vol. 112, pp.642–651, (1990).

    Article  Google Scholar 

  8. Michelassi, V., Rodi, W., Gieb, P. A.: Experimental and Numerical Investigation of Boundary-Layer and Wake Development in a Transonic Turbine Cascade, Aerospace Science and Technology, 2(3), pp.191–204, (1998).

    Article  Google Scholar 

  9. Biswas, G., Eswaran, V.: Turbulent Flows: Fundamentals, Experiments and Modeling, CRC Press, Boca Raton, FL, Chap. 15, (2002).

    Google Scholar 

  10. Harrison, S.: Secondary Loss Generation in a Linear Cascade of High-Turning Blades, ASME Paper 89-GT-47, Toronto, Canada, (1989).

    Google Scholar 

  11. Pecnik, R., Pieringer P., Sanz, W.: Numerical Investigation of the Secondary Flow of a Transonic Turbine Stage Using Various Turbulence Closures, ASME Paper GT2005-68754, Reno-Tahoe, USA, (2005).

    Google Scholar 

  12. Hjärne, J., Larsson, J., Chernoray, V., Lofdahl, L.: Numerical Validations of Secondary Flows and Loss Development Downstream of a Highly Loaded Low-Pressure Turbine Outlet Guide Vane Cascade, ASME Paper GT2007-27712, Montreal, Canada, (2007).

    Google Scholar 

  13. Příhoda, J., Kozel, K.: ERCOFTAC Q-NET CFD url: http://qnet-ercoftac.cfms.org.uk/w/index.php/Silver:AC_6-12_Description, (2004).

    Google Scholar 

  14. Šťastný, M., Šafařík, P.: Experimental Analysis Data on the Transonic Flow Past a Turbine Cascade, ASME Paper 90-GT-313, Brussels, Belgium, (1990).

    Google Scholar 

  15. Amecke, J., Šafařík, P.: Data Reduction of the Wake Flow Measurements with Injection of an Other Gas, Forschungsbericht DLR, rep. nr. 95-32, Goettingen, Germany, (1995).

    Google Scholar 

  16. Matějka, M., Šafařík, P., Luxa, M., Šimurda, D., Synáč, J.: Loss Coefficient Dependence of Turbine Blade Cascade, ASME Paper GT2010-22740, Glasgow, UK, (2010).

    Google Scholar 

  17. Luxa, M., Synáč, J., Šafařík, J., Šimurda, D.: Causes and solution of aperiodicity of supersonic flow field downstream of a profile cascade, Communications, Vol. 14,4a, pp. 23–28, (2012).

    Google Scholar 

  18. Ferziger, J. H., Perics, M.: Computational Methods for Fluid Dynamics, Springer, Berlin, Heidelberg, New York, (2001).

    Google Scholar 

  19. Menter, F., R., Kuntz, M., and Langtry, R., Ten Years of Industrial Experience with the SST Turbulence Model, Turbulence, Heat and Mass Transfer 4, ed: K. Hanjalic, Y. Nagano, and M. Tummers, Begell House, Inc., Antalya, Turkey, pp. 625–632, (2003).

  20. Fürst, J.: A weighted least square scheme for compressible flows, J. Flow Turbulence and Combustion, Vol 76, No 4, pp 331–342, (2006).

    Article  MATH  Google Scholar 

  21. Smart, M.K., Kalkhoran, I.M.: The Effect of Shock Strength on Oblique Shock Wave-Vortex Interaction, AIAA Journal, 33,11, pp 2137–2143, (1995).

    Article  ADS  Google Scholar 

  22. Sforza, P.M.: Shock-Vortex Interaction Research, Fluid Dynamics Research on Supersonic Aircraft, NATO Research and Technology Organization AVT/VKI Special Course, Brussels (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the Czech Science Foundation under the grant No. GAP 101/10/1329.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimurda, D., Fürst, J. & Luxa, M. 3D flow past transonic turbine cascade SE 1050 — Experiment and numerical simulations. J. Therm. Sci. 22, 311–319 (2013). https://doi.org/10.1007/s11630-013-0629-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-013-0629-7

Keywords

Navigation