Skip to main content

Advertisement

Log in

Nonpositive solutions of one functional differential inequality

  • Published:
Nonlinear Oscillations

We establish efficient conditions guaranteeing that every solution of the problem

$ u'(t) \geq \ell (u)(t),\quad u(a) \geq h(u), $

where \( \ell :C\left( {\left[ {a,b} \right];\mathbb{R}} \right) \to L\left( {\left[ {a,b} \right];\mathbb{R}} \right) \) and \( h:C\left( {\left[ {a,b} \right];\mathbb{R}} \right) \to \mathbb{R} \) are linear bounded operators, is nonpositive. The results obtained are very useful for the investigation of the question of solvability and unique solvability of nonlocal boundary-value problems for first-order functional differential equations in both linear and nonlinear cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the Theory of Functional Differential Equations [in Russian], Nauka, Moscow (1991).

    MATH  Google Scholar 

  2. E. Bravyi, “A note on the Fredholm property of boundary-value problems for linear functional differential equations,” Mem. Different. Equat. Math. Phys., 20, 133–135 (2000).

    MATH  MathSciNet  Google Scholar 

  3. N. Dilnaya and A. Rontó, “Multistage iterations and solvability of linear Cauchy problems,” Miskolc Math. Notes, 4, No. 2, 89–102 (2003).

    MATH  MathSciNet  Google Scholar 

  4. A. Domoshnitsky and Ya. Goltser, “One approach to study of stability of integro-differential equations,” Nonlinear Anal., 47, 3885–3896 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Hakl, I. Kiguradze, and B. Půža, “Upper and lower solutions of boundary-value problems for functional differential equations and theorems on functional differential inequalities,” Georg. Math. J., 7, No. 3, 489–512 (2000).

    MATH  Google Scholar 

  6. R. Hakl, A. Lomtatidze, and B. Půža, “On nonnegative solutions of first-order scalar functional differential equations,” Mem. Different. Equat. Math. Phys., 23, 51–84 (2001).

    MATH  Google Scholar 

  7. R. Hakl, A. Lomtatidze, and J. Šremr, “On constant-sign solutions of a periodic-type boundary-value problem for first-order scalar functional differential equations,” Mem. Different. Equat. Math. Phys., 26, 65–90 (2002).

    MATH  Google Scholar 

  8. R. Hakl, A. Lomtatidze, and J. Šremr, “On nonnegative solutions of a periodic-type boundary-value problem for first-order scalar functional differential equations,” Funct. Different. Equat., 11, No. 3, 363–394 (2004).

    MATH  Google Scholar 

  9. R. Hakl, A. Lomtatidze, and J. Šremr, Some Boundary-Value Problems for First-Order Scalar Functional Differential Equations, Folia Facult. Sci. Natur. Univ. Masar., Brunensis, Brno (2002).

    MATH  Google Scholar 

  10. R. Hakl, A. Lomtatidze, and I. P. Stavroulakis, “On a boundary-value problem for scalar linear functional differential equations,” Abstr. Appl. Anal., No. 1, 45–67 (2004).

    Article  MathSciNet  Google Scholar 

  11. I. Kiguradze and B. Půža, Boundary-Value Problems for Systems of Linear Functional Differential Equations, Folia Facult. Sci. Natur. Univ. Masar., Brunensis, Brno (2003).

    MATH  Google Scholar 

  12. I. Kiguradze and B. Půža, “On boundary-value problems for systems of linear functional differential equations,” Czech. Math. J., 47, 341–373 (1997).

    Article  MATH  Google Scholar 

  13. I. Kiguradze and Z. Sokhadze, “On singular functional differential inequalities,” Georg. Math. J., 4, No. 3, 259–278 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Lomtatidze and Z. Opluštil, “On nonnegative solutions of a certain boundary-value problem for first-order linear functional differential equations,” Electron. J. Qual. Theory Different. Equat. (Proc. 7th Coll. QTDE), No. 16, 1–21 (2004).

  15. A. D. Myshkis, Linear Differential Equations with Retarded Argument [in Russian], Nauka, Moscow (1972).

    MATH  Google Scholar 

  16. A. Rontó, “On the initial-value problem for systems of linear differential equations with argument deviations,” Miskolc Math. Notes, 6, No. 1, 105–127 (2005).

    MATH  MathSciNet  Google Scholar 

  17. A. N. Ronto, “Exact solvability conditions for the Cauchy problem for systems of first-order linear functional differential equations determined by .(σ 1, σ 2, …, σ n ; τ)-positive operators,” Ukr. Math. J., 55, No. 11, 1853–1884 (2003).

    Article  MathSciNet  Google Scholar 

  18. Š. Schwabik, M. Tvrdý, and O. Vejvoda, Differential and Integral Equations: Boundary-Value Problems and Adjoints, Academia, Praha (1979).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lomtatidze.

Additional information

Published in Neliniini Kolyvannya, Vol. 12, No. 4, pp. 461–494, October–December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomtatidze, A., Opluštil, Z. & Šremr, J. Nonpositive solutions of one functional differential inequality. Nonlinear Oscill 12, 474–509 (2009). https://doi.org/10.1007/s11072-010-0090-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11072-010-0090-4

Keywords

Navigation