Skip to main content

Advertisement

Log in

Survival of cold-adapted species in isolated mountains: the population genetics of the Sudeten ringlet, Erebia sudetica sudetica, in the Jeseník Mts., Czech Republic

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Relic populations of cold-adapted species, trapped in isolated mountain pockets within the temperate zone, are predicted to suffer considerably due to ongoing climate warming. The butterfly Erebia sudetica sudetica is an example restricted to the Eastern Sudety Mts. Here, the butterfly forms permanent populations on subalpine tall-herb grasslands, but also occupies woodland clearings and hay meadows at lower altitudes. We assume differences among the genetic diversities of the populations due to differences in the temporal continuity of these habitats. Therefore, 17 allozyme loci were analysed for 276 individuals from 13 different localities (six tall-herb stands, two meadows, five forest clearings) in the Jeseník Mts. with a maximum distance of 20 km among them. We obtained a significantly higher genetic diversity for the subalpine populations than for the forest clearing populations. The genetic differentiation among the forest clearing populations was higher than among the subalpine ones. They also showed a significant isolation-by-distance system. These findings support the idea that the lower-elevation populations might have been founded by more than one dispersal event from the subalpine sites, but also secondary colonisations and gene flow in the forest belt. Due to founder effects and possibly further subsequent bottlenecks, these forest clearing populations did not harbour the entire genetic diversity of the taxon. Therefore, conservation actions should focus on the subalpine tall-herb formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beneš J, Kuras T, Konvička M (2000) Assemblages of mountainous day-active Lepidoptera in the Hruby Jesenik Mts, Czech Republic. Biologia 55:153–161

    Google Scholar 

  • Britten HB, Brussard PF, Murphy DD, Austin GT (1994) Colony isolation and isozyme variability of the western seep fritillary, Speyeria nokomis apacheana (Nymphalidae), in the western Great Basin. Great Basin Nat 54:97–105

    Google Scholar 

  • Britten HB, Brussard PF, Murphy DD, Ehrlich PR (1995) A test for isolation-by-distance in central rocky mountain and great basin populations of Edith’s Checkerspot butterfly (Euphydryas editha). J Hered 86:204–210

    Google Scholar 

  • Brussard PF, Ehrlich PR (1970) The population structure of Erebia epipsodea (Lepidoptera: Satyridae). Ecology 51:119–129

    Article  Google Scholar 

  • Čížek O, Bakešová A, Kuras T, Beneš J, Konvička M (2003) Vacant niche in alpine habitat: the case of an introduced population of the butterfly Erebia epiphron in the Krkonose mountains. Acta Oecol 24:15–23

    Article  Google Scholar 

  • Debinski DM (1994) Genetic diversity assessment in a metapopulation of the butterfly Euphydryas gillettii. Heredity 70:25–30

    Google Scholar 

  • Dieker P, Drees C, Assmann T (2011) Two high-mountain burnet moth species (Lepidoptera, Zygaenidae) react differently to the global change drivers climate and land-use. Biol Conserv 12:2810–2818

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Feehan J, Harley M, van Minnen J (2009) Climate change in Europe, 1, impact on terrestrial ecosystems and biodiversity, a review. Agron Sustain Dev 29:409–421

    Article  Google Scholar 

  • Felsenstein J (2000) PHYLIP (phylogeny inference package) Ver. 3.5.c. Department of genetics. University of Washington, Seattle, Washington

    Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biol 12:1545–1553

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Habel JC, Assmann T (eds) (2010) Relict Species: Phylogeography and Conservation Biology. Springer, Heidelberg

    Google Scholar 

  • Habel JC, Schmitt T (2012) The burden of genetic diversity. Biol Conserv 147:270–274

    Article  Google Scholar 

  • Habel JC, Zachos FE, Finger A, Meyer M, Louy D, Assmann T, Schmitt T (2009) Unprecedented long-term genetic monomorphism in an endangered relict butterfly species. Conserv Genet 10:1659–1665

    Article  Google Scholar 

  • Habel JC, Rödder D, Schmitt T, Nève G (2011) Global warming will affect genetic diversity of Lycaena helle populations. Global Change Biol 17:194–205

    Article  Google Scholar 

  • Harris H, Hopkinson DA (1978) Handbook of enzyme electrophoresis in human genetics. North-Holland, Amsterdam

    Google Scholar 

  • Harrison S (1991) Local extinction in a metapopulation context: an empirical evaluation. Biol J Linn Soc 42:73–88

    Article  Google Scholar 

  • Haubrich K, Schmitt T (2007) Cryptic differentiation in alpine-endemic, high-altitude butterflies reveals down-slope glacial refugia. Mol Ecol 16:3643–3658

    Article  CAS  PubMed  Google Scholar 

  • Heikkinen RK, Luoto M, Leikola N, Poyry J, Settele J, Kudrna O, Marmion M, Fronzek S, Thuiller W (2010) Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodiv Conserv 19:695–723

    Article  Google Scholar 

  • Heinrich B (1986) Comparative thermoregulation of four montane butterflies of different mass. Physiol Zool 59:616–626

    Google Scholar 

  • Jeník J (1961) Alpínská vegetace Krkonoš, Králického Sněžníku a Hrubého Jeseníku: Teorie anemo-orografických systémů [Alpine vegetation of Krkonose, Kralicky Sneznik and Hruby Jesenik: The theory of anemo-orographical systems]. ČSAV, Praha

    Google Scholar 

  • Jeník J (1998) Biodiversity of the hercynian mountains of Central Europe. Pirineos 151–152:83–99

    Article  Google Scholar 

  • Junker M, Wagner S, Gros P, Schmitt T (2010) Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly. Oecologia 164:971–980

    Article  PubMed  Google Scholar 

  • Kočárek P (1996) Příspěvek k rozšíření silpha tyrolensis laicharting, 1781 (Coleoptera, Silphidae) v Jeseníkách (Česká republika). [Contribution to the distribution of Silpha tyrolensis Laicharting, 1781 (Coleoptera, Silphidae) in Jeseníky Mts. (Czech Republic).]. Cas Slez Muz Opava (A) 45:51–54

    Google Scholar 

  • Konvička M, Beneš J, Schmitt T (2010) Ecological limits vis a vis changing climate: relic Erebia butterflies in insular Sudetan mountains. In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, Heidelberg, pp 341–355

    Chapter  Google Scholar 

  • Kuras T, Helová S (2002) Relict occurrence of the leaf-roller Sparganothis rubicundana in Central Europe (Lepidoptera, Tortricidae). Cas Slez Muz Opava (A) 51:199–204

    Google Scholar 

  • Kuras T, Beneš J, Konvička M (2001a) Behaviour and within-habitat distribution of adult Erebia sudetica sudetica, endemic of the Hrubý Jeseník Mts., Czech Republic (Nymphalidae, Satyrinae). Nota lepid 24:87–101

    Google Scholar 

  • Kuras T, Beneš J, Konvička M, Honc L (2001) Life histories of Erebia sudetica sudetica and E. epiphron silesiana with description of immature stages (Lepidoptera Nymphalidae, Satyrinae). Atalanta 32:187–196 + xii

  • Kuras T, Konvička M, Beneš J, Čížek O (2001c) Erebia sudetica and Erebia epiphron (Lepidoptera: Nymphalidae, Satyrinae) in the Czech Republic: review of present and past distribution, conservation implications. Cas Slez Muz Opava (A) 50:57–81

    Google Scholar 

  • Kuras T, Beneš J, Fric Z, Konvička M (2003) Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica. Popul Ecol 45:115–123

    Article  Google Scholar 

  • Kuras T, Sitek J, Liška J, Mazalová M, Černá K (2009) Motýli (Lepidoptera) národní přírodní rezervace Praděd (CHKO Jeseníky): implikace poznatků v ochraně území [Lepidoptera of the Praded National Nature Reserve (Jeseniky PLA): a conservation synthesis]. Cas Slez Muz Opava (A) 58:250–288

    Google Scholar 

  • Liška J (2000) An attempt at comparing the lepidopteran fauna of subalpine areas of the High Sudetes. Opera Corcontica 37:286–290

    Google Scholar 

  • Louy D, Habel JC, Ulrich W, Schmitt T (2014) Out of the alps: the biogeography of a disjunctly distributed mountain butterfly, the almond eyed ringlet Erebia alberganus (Lepidoptera, Satyrinae). J Hered. doi:10.1093/jhered/est081

    PubMed  Google Scholar 

  • Matter SF, Doyle A, Illerbrun K, Wheeler J, Roland J (2011) An assessment of direct and indirect effects of climate change for populations of the rocky mountain apollo butterfly (Parnassius smintheus doubleday). Insect Sci 18:385–392

    Article  Google Scholar 

  • Mazalová M, Dvořák L, Bezděčka P, Kuras T (2009) Čmeláci a pačmeláci (Hymenoptera: Apidae: Bombus) národní přírodní rezervace praděd (Hrubý Jeseník) [bumblebees (Hymenoptera: Apidae: Bombus) of the praded national nature reserve (Jesenik Mts.)]. Cas Slez Muz Opava (A) 58:243–249

    Google Scholar 

  • Nei M (1972) Genetic distances between populations. Am Nat 106:283–291

    Article  Google Scholar 

  • Nève G, Pavlíčko A, Konvička M (2009) Loss of genetic diversity through spontaneous colonization in the bog fritillary butterfly, Proclossiana eunomia (Lepidoptera: Nymphalidae) in the Czech Republic. Eur J Entomol 106:11–19

    Article  Google Scholar 

  • Novák J, Petr L, Treml V (2010) Late-holocene human-induced changes to the extent of alpine areas in the east Sudetes, Central Europe. Holocene 20:895–905

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson BJ, Baverstock PR, Adams M (1986) Allozyme electrophoresis. Academic Press, San Diego, A handbook for animal systematics and population studies

    Google Scholar 

  • Roland J, Matter SF (2007) Encroaching forests decouple alpine butterfly population dynamics. Proc Nat Acad Sc USA 104:13702–13704

    Article  CAS  Google Scholar 

  • Rybníček K, Rybníčková E (2004) Pollen analyses of sediments from the summit of the Praded range in the Hruby Jesenik Mts (Eastern Sudetes). Preslia 76:331–347

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Scalercio S (2009) On top of a mediterranean massif: climate change and conservation of orophilous moths at the southern boundary of their range (Lepidoptera: Macroheterocera). Eur J Entomol 106:231–239

    Article  Google Scholar 

  • Schmitt T, Besold J (2010) Upslope movements and large scale expansions: the taxonomy and biogeography of the Coenonympha arcaniaC. darwiniana- C. gardetta butterfly species complex. Zool J Linn Soc 159:890–904

    Article  Google Scholar 

  • Schmitt T, Seitz A (2004) Low diversity but high differentiation: the population genetics of Aglaope infausta (Zygaenidae: Lepidoptera). J Biogeogr 31:137–144

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetics data analysis. Anthropology, University of Genève

  • Settele J, Kudrna O, Harpke A, Kühn I, van Swaay C, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kühn E, van Halder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic Risk Atlas of European Butterflies. Pensoft, Sofia

    Google Scholar 

  • Siegismund HR (1993) G-Stat, ver. 3, Genetical statistical programs for the analysis of population data. The Arboretum, Royal Veterinary and Agricultural University, Horsholm, Denmark

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Treml V, Jankovská V, Petr L (2008) Holocene dynamics of the alpine timberline in the High Sudetes. Biologia 63:73–80

    Article  Google Scholar 

  • Van Swaay C, Wynhoff I, Verovnik R, Wiemers M, López Munguira M, Maes D, Sasic M, Verstrael T, Warren M, Settele J (2010) Erebia sudetica. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.1. <www.iucnredlist.org>

  • Van Swaay C, Collins S, Dušej G, Maes D, López Munguira M, Rakosy L, Ryrholm N, Šašić M, Settele J, Thomas J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2012) Dos and don’ts for butterflies of the habitats directive of the European union. Nature Conserv 1:73–153

    Article  Google Scholar 

  • Vandewoestijne S, Van Dyck H (2010) Population genetic differences along a latitudinal cline between original and recently colonized habitat in a butterfly. PLoS ONE 5(11):e13810

    Article  PubMed Central  PubMed  Google Scholar 

  • Vrba P, Konvička M, Nedvěd O (2012) Reverse altitudinal cline in cold hardiness among Erebia butterflies. Cryo-Lett 33:251–258

    Google Scholar 

  • Waits ER, Bagley MJ, Blum MJ, McCormick FH, Lazorchak JM (2008) Source–sink dynamics sustain central stonerollers (Campostoma anomalum) in a heavily urbanized catchment. Freshw Biol 53:2061–2075

    Article  Google Scholar 

  • Wilson RJ, Maclean IMD (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:259–268

    Article  Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biol 13:1873–1887

    Article  Google Scholar 

Download references

Acknowledgments

We thank the administration of the Jeseniky Protected Landscape Area for entry and sampling permits, and logistic support. The study was funded by the Czech Science Foundation (P505/10/1630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Konvička.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konvička, M., Mihaly, C.V., Rákosy, L. et al. Survival of cold-adapted species in isolated mountains: the population genetics of the Sudeten ringlet, Erebia sudetica sudetica, in the Jeseník Mts., Czech Republic. J Insect Conserv 18, 153–161 (2014). https://doi.org/10.1007/s10841-014-9621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9621-0

Keywords

Navigation