Skip to main content
Log in

Solution of the Transmission Problem

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The solution of the following transmission problem for the Laplace equation is constructed: Δu +=0 in G +, Δu =0 in G , u +u =f in G +, n⋅( u +a u )+b τ⋅( u + u )+h + u ++h u =g in G +.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Dahlberg, B.E.J., Kenig, C.: Hardy spaces and the Neumann problem in L p for Laplace’s equation in Lipschitz domains. Ann. Math. 125, 437–465 (1987)

    Article  MathSciNet  Google Scholar 

  3. Escauriaza, L., Mitrea, M.: Transmission problems and spectral theory for singular integral operators on Lipschitz domains. J. Funct. Anal. 216, 141–171 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Escauriaza, L., Seo, J.K.: Regularity properties of solutions to transmission problems. Trans. Am. Math. Soc. 338, 405–430 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Escauriaza, L., Fabes, E., Verchota, G.: On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries. Proc. Am. Math. Soc. 115, 1069–1076 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fabes, E., Sand, M., Seo, J.K.: The spectral radius of the classical layer potentials on convex domains. IMA Vol. Math. Appl. 42, 129–137 (1992)

    MathSciNet  Google Scholar 

  7. Kellog, O.D.: Foundation of Potential Theory. Springer, Berlin (1929)

    Google Scholar 

  8. Kenig, C.E.: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  9. Král, J.: Integral Operators in Potential Theory. Lecture Notes in Mathematics, vol. 823. Springer, Berlin (1980)

    MATH  Google Scholar 

  10. Lanzani, L., Shen, Z.: On the Robin boundary condition for Laplace’s equation in Lipschitz domains. Commun. Partial Differ. Equ. 29, 91–109 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Medková, D.: Solution of the Robin problem for the Laplace equation. Appl. Math. 43, 133–155 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Medková, D.: The third problem for the Laplace equation with a boundary condition from L p . Integral. Equ. Oper. Theory 54, 235–258 (2006)

    Article  MATH  Google Scholar 

  13. Mitrea, D.: The method of layer potentials for non-smooth domains with arbitrary topology. Integral. Equ. Oper. Theory 29, 320–338 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mitrea, D., Mitrea, I.: On the Besov regularity of conformal maps and layer potentials on nonsmooth domains. J. Funct. Anal. 201, 380–429 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schechter, M.: Principles of Functional Analysis. American Mathematical Society, Providence (2002)

    Google Scholar 

  16. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ziemer, W.P.: Weakly Differentiable Functions. Springer, Berlin (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Medková.

Additional information

The research was supported by the Academy of Sciences of the Czech Republic, Institutional Research Plan No. AV0Z10190503.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medková, D. Solution of the Transmission Problem. Acta Appl Math 110, 1489–1500 (2010). https://doi.org/10.1007/s10440-009-9522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9522-5

Keywords

Mathematics Subject Classification (2000)

Navigation