Skip to main content
Log in

Numerical simulation of transonic flow of wet steam in nozzles and turbines

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The paper presents several modifications of the flow model published in Štastný and Šejna (Proceedings of the 12th international conference of the properties of water and steam, Begel House, pp 711–719, 1995). Modifications related to the droplet growth model and the equation of state and their implementation into numerical code are described. The effect of droplet size spectra of incoming wet steam is also discussed. Numerical results of three-dimensional flow of wet steam in a turbine cascade show the effect of surface tension correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Štastný M, Šejna M (1995) Condensation effects in transonic flow through turbine cascade. In: Proceedings of the 12th international conference of the properties of water and steam, Begel House, pp 711–719

  2. Petr V, Kolovratník M (2001) Heterogenous effects in the droplet nucleation process in LP steam turbines. In: 4th European conference on turbomachinery, Firenze

  3. Heiler M (1999) Instationäre Phänomene in homogen/heterogen kondensierenden Düsen- und Turbinenströmungen, University Karlsruhe, PhD thesis

  4. Halama J, Benkhaldoun F, Fořt J (2011) Flux schemes based finite volume method for internal transonic flow with condensation. Int J Numer Methods Fluids 65(8):953–968

    Article  MATH  Google Scholar 

  5. John V, Angelov I, Oncul A, Thevenin D (2007) Techniques for the reconstruction of a distribution from a finite number of its moments. J Chem Eng Sci 62(11):2890–2904

    Article  Google Scholar 

  6. Dykas S, Goodheart K, Schnerr GH (2003) Numerical study of accurate and efficient modeling for simulation of condensing flow in transonic steam turbines. In: 5th European conference on Turbomachinery, Prague, pp 751–760

  7. Šejna M, Lain J (1994) Numerical modelling of wet steam flow with homogenous condensation on unstructured triangular meshes. J ZAMM 74(5):375–378

    Google Scholar 

  8. Gerber AG, Kermani MJ (2004) A pressure based Eulerian-Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int J Heat Mass Transf 47:2217–2231

    Article  MATH  Google Scholar 

  9. Sun L, Zheng Q, Liu S (2007) 2D-simulation of wet steam flow in a steam turbine with spontaneous condensation. J Mar Sci Appl 6(2):59–63

    Article  Google Scholar 

  10. Hill PG (1966) Condensation of water vapor during supersonic expansion in nozzles, part 3. J Fluid Mech 3:593–620

    Article  Google Scholar 

  11. Becker R, Doering W (1935) Kinetische Behandlung der Keimbildung in übersättingten Dämpfen. J Ann Phys 24(8):719

    Article  MATH  Google Scholar 

  12. Strang G (1968) On the construction and comparison of difference schemes. SIAM J Numer Anal 5:506–517

    Article  MathSciNet  MATH  Google Scholar 

  13. Barschdorff D (1971) Verlauf der Zustandgroesen und gasdynamische Zuammenhaenge der spontanen Kondensation reinen Wasserdampfes in Lavalduesen, Forsch. Ing.-Wes., vol 37, no 5

  14. Dykas S (2001) Numerical calculation of the steam condensing flow. Task Q 4:519–535

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the grants No. 101/11/1593 and No. 201/08/0012 of the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Halama.

Appendix

Appendix

The system of transport equations for the one-dimensional case with the variable cross-sectional area \(A(x)\) reads

$$\begin{aligned}&\displaystyle \dfrac{\partial (A(x)\mathbf{W})}{\partial t} +\dfrac{\partial (A(x)\mathbf{F})}{\partial x}=\mathbf{P}+A(x)\mathbf{Q},&\\&\displaystyle \mathbf{W}=\left[\begin{array}{c} \rho \\ \rho u \\ e \\ \rho \chi \\ \rho Q_2 \\ \rho Q_1 \\ \rho Q_0 \end{array}\right],\quad \mathbf{F}=\left[\begin{array}{c} \rho u \\ \rho u^2+p \\ (e+p)u \\ \rho \chi u \\ \rho Q_2 u \\ \rho Q_1 u \\ \rho Q_0 u \end{array}\right],\quad \mathbf{P}=\left[\begin{array}{c} 0 \\ p A^{\prime }(x) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}\right],&\nonumber \\&\displaystyle \mathbf{Q}=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \frac{4}{3}\pi r_c^3 J \rho _l +4 \pi \rho \left(\int \nolimits _{0}^{\infty } r^2 N(r) \dot{r}(r) dr\right) \rho _l \\ r_c^2 J + 2 \rho \left(\int \nolimits _{0}^{\infty } r N(r) \dot{r}(r) dr\right) \\ r_c J + \rho \left(\int \nolimits _{0}^{\infty } N(r) \dot{r}(r) dr\right)\\ J \end{array}\right].\nonumber&\end{aligned}$$
(20)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halama, J., Fořt, J. Numerical simulation of transonic flow of wet steam in nozzles and turbines. Computing 95 (Suppl 1), 303–318 (2013). https://doi.org/10.1007/s00607-013-0292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-013-0292-6

Keywords

Mathematics Subject Classification

Navigation