Skip to main content
Log in

XANES and micro-Raman spectroscopy study of the barium titanosilicates BaTiSi2O7 and BaTiSi4O11

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The coordination environment around Ti4+ in the photoluminescent compound BaTiSi2O7 and in BaTiSi4O11 was investigated with X-ray absorption near-edge structure spectroscopy and micro-Raman spectroscopy. The presence of VTi in TiO5 pyramidal units with one short Ti–O bond involving the apical oxygen was detected in both compounds. Interpretation of the vibrational signal from the silicate framework suggested that BaTiSi4O11 is a metasilicate containing building units of SiO4 tetrahedra, which are larger than in other barium titanosilicates. These results confirmed the same structural environment of Ti4+ as recently disclosed by structure refinement of BaTiSi2O7 and provided new insights into the unknown structure of BaTiSi4O11 in the light of the study of its physical properties as potential functional material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Gaft, L. Nagli, G. Waychunas, D. Weiss, Phys. Chem. Miner. 31, 365 (2004)

    Article  ADS  Google Scholar 

  2. Y. Takahashi, K. Kitamura, N. Iyi, S. Inoue, Ceram. Soc. Jpn. 114, 313 (2006)

    Article  Google Scholar 

  3. G. Blasse, K.C. Blejinberg, R.C. Powell, Luminescence and Energy Transfer, with Contributions (Springer, Berlin, 1980)

    Google Scholar 

  4. A. Viani, A. Palermo, S. Zanardi, N. Demitri, V. Petrícek, F. Varini, E. Belluso, K. Ståhl, A.F. Gualtieri, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 71, 153 (2015)

    Article  Google Scholar 

  5. N. Von Köppen, A. Dietzel, Glas. Ber. 49, 199 (1976)

    Google Scholar 

  6. F. Farges, G. Brown, J. Rehr, Phys. Rev. B 56, 1809 (1997)

    Article  ADS  Google Scholar 

  7. F. Farges, G.E. Brown Jr, J.R. Rehr, Geochim. Cosmochim. Acta 60, 3023 (1996)

    Article  ADS  Google Scholar 

  8. F. Farges, J. Non-Cryst. Solids 204, 53 (1996)

    Article  ADS  Google Scholar 

  9. C.W. Ponader, H. Boek, J.E. Dickinson, J. Non-Cryst. Solids 201, 81 (1996)

    Article  ADS  Google Scholar 

  10. G.A. Waychunas, Am. Mineral. 72, 89 (1987)

    Google Scholar 

  11. M. Gabelica-Robert, P. Tarte, Phys. Chem. Miner. 7, 26 (1981)

    Article  ADS  Google Scholar 

  12. S. Stassen, P. Tarte, A. Rulmont, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 54, 1423 (1998)

    Article  ADS  Google Scholar 

  13. Y. Su, M.L. Balmer, B.C. Bunker, J. Phys. Chem. Chem. B 104, 8160 (2000)

    Article  Google Scholar 

  14. S.A. Markgraf, S.K. Sharma, A.S. Bhalla, J. Mater. Res. 8, 635 (1993)

    Article  ADS  Google Scholar 

  15. T.G. Mayerhöfer, H.H. Dunken, Vib. Spectrosc. 25, 185 (2001)

    Article  Google Scholar 

  16. R.V. Vedrinskii, V.L. Kraizman, A.A. Novakovich, P.V. Demekhin, S.V. Urazhdin, J. Phys.: Condens. Matter 10, 9561 (1999)

    ADS  Google Scholar 

  17. C. Lamberti, E. Borfecchia, J.A. van Bokhoven, M. Fernández-García, X-Ray Absorption and X-Ray Emission Spectroscopy (Chichester, Wiley, 2016), pp. 303–350

    Book  Google Scholar 

  18. S. Andersson, A.D. Wadsley, Acta Chem. Scand. 15, 663 (1961)

    Article  Google Scholar 

  19. A. Di Cicco, G. Aquilanti, M. Minicucci, E. Principi, N. Novello, A. Cognigni, L. Olivi, J. Phys: Conf. Ser. 190, 012043 (2009)

    ADS  Google Scholar 

  20. B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537 (2005)

    Article  Google Scholar 

  21. M. Wilke, F. Farges, P.E. Petit, G.E. Brown, F. Martin, Am. Mineral. 86, 714 (2001)

    Article  Google Scholar 

  22. P.B. Moore, J.S. Louisnathan, Science 156, 1361 (1967)

    Article  ADS  Google Scholar 

  23. P.B. Moore, J.S. Louisnathan, Zeitschrift Für Krist. 130, 438 (1969)

    Article  ADS  Google Scholar 

  24. V. Kostov-Kytin, B. Mihailova, S. Ferdov, O. Petrov, Solid State Sci. 6, 967 (2004)

    Article  ADS  Google Scholar 

  25. P. McMillan, Am. Mineral. 69, 622 (1984)

    ADS  Google Scholar 

  26. A.N. Lazarev, Vibrational Spectra and Structure of Silicates (Springer, New York, 1972)

    Google Scholar 

  27. E. Dowty, Phys. Chem. Miner. 14, 80 (1987)

    Article  ADS  Google Scholar 

  28. P.F. McMillan, G.H. Wolf, in Structure, Dynamics and Properties of Silicate Melts, ed. by J.F. Stebbins, P.F. McMillan, D.B. Dingwell (Mineralogical Society of America, Washington, DC, 1995), pp. 247–316

    Google Scholar 

  29. E. Dowty, Phys. Chem. Miner. 14, 122 (1987)

    Article  ADS  Google Scholar 

  30. D.W. Matson, S.K. Sharma, J.A. Philpotts, Am. Mineral. 71, 694 (1986)

    Google Scholar 

  31. R. Van Santen, D. Vogel, Adv. Solid-State Chem. 1, 151 (1989)

    Google Scholar 

  32. Y. Yu, G. Xiong, C. Li, F.S. Xiao, Microporous Mesoporous Mater. 46, 23 (2001)

    Article  Google Scholar 

  33. P.P. Knops-Gerrits, D.E. De Vos, E.J.P. Feijen, P.A. Jacobs, Microporous Mater. 8, 3 (1997)

    Article  Google Scholar 

  34. A.J.M. De Man, R.A. van Santen, Zeolites 12, 269 (1992)

    Article  Google Scholar 

  35. J. Choisnet, A. Deschanvres, P. Tarte, Spectrochim. Acta Part A Mol. Spectrosc. 31, 1023 (1975)

    Article  ADS  Google Scholar 

  36. D.A. McKeown, M.I. Bell, C.C. Kim, Phys. Rev. B 48, 16357 (1993)

    Article  ADS  Google Scholar 

  37. R.L. Frost, Y. Xi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 95, 263 (2012)

    Article  ADS  Google Scholar 

  38. S.K. Sharma, J.A. Philpotts, D.W. Matson, J. Non-Cryst. Solids 71, 403 (1985)

    Article  ADS  Google Scholar 

  39. M. Sitarz, W. Mozgawa, M. Handke, J. Mol. Struct. 404, 193 (1997)

    Article  ADS  Google Scholar 

  40. P.K. Dutta, K.M. Rao, J.Y. Parkt, J. Phys. Chem. 95, 6654 (1991)

    Article  Google Scholar 

  41. S.A. Markgraf, A. Halliyal, A.S. Bhalla, R.E. Newnham, C.T. Prewitt, Ferroelectrics 62, 17 (1985)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Project No. LO1219 under the Ministry of Education, Youth and Sports National sustainability programme I of Czech Republic. Experiments at the Elettra synchrotron facility (Basovizza, TS, Italy) (Proposal Nr. 20140188) were granted as Italian funded user.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Viani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viani, A., Pollastri, S., Macova, P. et al. XANES and micro-Raman spectroscopy study of the barium titanosilicates BaTiSi2O7 and BaTiSi4O11 . Appl. Phys. A 122, 372 (2016). https://doi.org/10.1007/s00339-016-9959-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9959-0

Keywords

Navigation