Skip to main content
Log in

Incompressible Limits and Propagation of Acoustic Waves in Large Domains with Boundaries

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the incompressible limit for the full Navier-Stokes-Fourier system on unbounded domains with boundaries, supplemented with the complete slip boundary condition for the velocity field. Using an abstract result of Tosio Kato we show that the energy of acoustic waves decays to zero on any compact subset of the physical space. This in turn implies strong convergence of the velocity field to its limit in the incompressible regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard T.: Low Mach number flows and combustion. SIAM J. Math. Anal. 38(4), 1186–1213 (2006) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alazard T.: Low Mach number limit of the full Navier-Stokes equations. Arch. Rat. Mech. Anal. 180, 1–73 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bechtel S.E., Rooney F.J., Forest M.G.: Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids. J. Appl. Mech. 72, 299–300 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burq N.: Global Strichartz estimates for nontrapping geometries: about an article by H. F. Smith and C. D. Sogge: “Global Strichartz estimates for nontrapping perturbations of the Laplacian”. Comm. Part. Diff. Eqs. 28(9–10), 1675–1683 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burq N., Planchon F., Stalker J.G., Tahvildar-Zadeh A.S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53(6), 1665–1680 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dermejian Y., Guillot J.-C.: Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbé. J. Diff. Eqs. 62, 357–409 (1986)

    Article  Google Scholar 

  7. Desjardins B., Grenier E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1986), 2271–2279 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Desjardins B., Grenier E., Lions P.-L., Masmoudi N.: Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)

    Article  MathSciNet  Google Scholar 

  9. Engquist B., Majda A.: Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math. 32(3), 314–358 (1979)

    Article  MathSciNet  Google Scholar 

  10. Feireisl E., Novotný A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser-Verlag, Basel (2009)

    Book  MATH  Google Scholar 

  11. Feireisl E., Poul L.: On compactness of the velicity field in the incompressible limit of the full Navier-Stokes-Fourier system on large domains. Math. Meth. Appl. Sci. 32, 1269–1286 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Isozaki H.: Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381, 1–36 (1987)

    MATH  MathSciNet  Google Scholar 

  13. Kato T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966)

    Article  MathSciNet  Google Scholar 

  14. Klainerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34, 481–524 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Klein R.: Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. Z. Angw. Math. Mech. 80, 765–777 (2000)

    Article  MATH  Google Scholar 

  16. Klein R.: Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM: Math. Mod. Numer. Anal. 39, 537–559 (2005)

    Article  MATH  Google Scholar 

  17. Klein R., Botta N., Schneider T., Munz C.D., Roller S., Meister A., Hoffmann L., Sonar T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39, 261–343 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Leis, R.: Initial-boundary Value Problems in Mathematical Physics. Stuttgart: B. G. Teubner, 1986

  19. Lighthill J.: On sound generated aerodynamically I. General theory. Proc. of the Royal Society of London A 211, 564–587 (1952)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Lighthill J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  21. Lions P.-L.: Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  22. Lions P.-L., Masmoudi N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    MATH  MathSciNet  Google Scholar 

  23. Lions P.-L., Masmoudi N.: Une approche locale de la limite incompressible. C.R. Acad. Sci. Paris Sér. I Math. 329(5), 387–392 (1999)

    MATH  MathSciNet  ADS  Google Scholar 

  24. Masmoudi, N.: Asymptotic problems and compressible and incompressible limits. In: Advances in Mathematical Fluid Mechanics, edited by Málek, J., Nečas, J., Rokyta, M., Berlin: Springer-Verlag, 2000, pp. 119–158

  25. Masmoudi, N.: Examples of singular limits in hydrodynamics. In: Handbook of Differential Equations, III, Dafermos, C., Feireisl, E., eds., Amsterdam: Elsevier, 2006

  26. Masmoudi N.: Rigorous derivation of the anelastic approximation. J. Math. Pures Appl. 88, 230–240 (2007)

    MATH  MathSciNet  Google Scholar 

  27. Metcalfe J.L.: Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle. Trans. Amer. Math. Soc. 356(12), 4839–4855 (2004) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  28. Morawetz C.S.: Decay for solutions of the exterior problem for the wave equation. Comm. Pure Appl. Math. 28, 229–264 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  29. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1978

  30. Schochet S.: Fast singular limits of hyperbolic PDE’s. J. Diff. Eqs. 114, 476–512 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schochet S.: The mathematical theory of low Mach number flows. M2AN Math. Model Numer. Anal. 39, 441–458 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Shimizu S.: The limiting absorption principle. Math. Meth. Appl. Sci. 19, 187–215 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Smith H.F., Sogge C.D.: Global Strichartz estimates for nontrapping perturbations of the Laplacian. Comm. Part. Diff. Eqs. 25(11–12), 2171–2183 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Vaigant V.A.: An example of the nonexistence with respect to time of the global solutions of Navier-Stokes equations for a compressible viscous barotropic fluid (in Russian). Dokl. Akad. Nauk 339(2), 155–156 (1994)

    Google Scholar 

  35. Vaĭnberg, B.R.: Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki. Moscow: Moskov. Gos. Univ., 1982

  36. Walker H.F.: Some remarks on the local energy decay of solutions of the initial-boundary value problem for the wave equation in unbounded domains. J. Diff. Eqs. 23(3), 459–471 (1977)

    Article  MATH  Google Scholar 

  37. Wilcox, C.H.: Sound Propagation in Stratified Fluids. Appl. Math. Ser. 50. Berlin: Springer-Verlag, 1984

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

Communicated by P. Constantin

The work of E.F. was supported by Grant 201/08/0315 of GA ČR as a part of the general research programme of the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feireisl, E. Incompressible Limits and Propagation of Acoustic Waves in Large Domains with Boundaries. Commun. Math. Phys. 294, 73–95 (2010). https://doi.org/10.1007/s00220-009-0954-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0954-6

Keywords

Navigation