Skip to main content
Log in

Boundary Behavior of Viscous Fluids: Influence of Wall Roughness and Friction-driven Boundary Conditions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a family of solutions to the evolutionary Navier–Stokes system supplemented with the complete slip boundary conditions on domains with rough boundaries. We give a complete description of the asymptotic limit by means of Γ-convergence arguments, and identify a general class of boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amirat A.A., Bresch D., Lemoine J., Simon J.: Effect of rugosity on a flow governed by stationary Navier–Stokes equations. Quart. Appl. Math. 59, 768–785 (2001)

    MathSciNet  Google Scholar 

  2. Amirat A.A., Climent E., Fernández-Cara E., Simon J.: The Stokes equations with Fourier boundary conditions on a wall with asperities. Math. Models. Methods Appl. 24, 255–276 (2001)

    Article  MATH  ADS  Google Scholar 

  3. Ansini N., Garroni A.: Γ-convergence of functionals on divergence-free fields. ESAIM Control Optim. Calc. Var. 13(4), 809–828 (2007) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  4. Basson A., Gérard-Varet D.: Wall laws for fluid flows at a boundary with random roughness. Preprint (2006)

  5. Bogovskii M.E.: Solution of some vector analysis problems connected with operators div and grad (in Russian). Trudy Sem. S.L. Sobolev 80(1), 5–40 (1980)

    MathSciNet  Google Scholar 

  6. Bouchitté G., Seppecher P.: Cahn and Hilliard fluid on an oscillating boundary. Motion by Mean Curvature and Related Topics (Trento, 1992), de Gruyter, Berlin, 23–42, 1994

  7. Bucur D., Feireisl E., Nečasová Š., Wolf J.: On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries. J. Differ. Equ. 244, 2890–2908 (2008)

    Article  MATH  Google Scholar 

  8. Bucur D., Feireisl E., Nečasová Š.: On the asymptotic limit of flows past a ribbed boundary J. Math. Fluid Mech. 10(4), 554–568 (2008)

    Article  MathSciNet  Google Scholar 

  9. Casado-Díaz J., Fernández-Cara E., Simon J.: Why viscous fluids adhere to rugose walls: A mathematical explanation. J. Differ. Equ. 189, 526–537 (2003)

    Article  MATH  Google Scholar 

  10. Chenais D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52(2), 189–219 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dal Maso G.: An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, Vol. 8. Birkhäuser Boston, Boston, 1993

  12. Dal Maso G., Defranceschi A., Vitali E.: Integral representation for a class of C 1-convex functionals. J. Math. Pures Appl. (9) 73(1), 1–46 (1994)

    MATH  MathSciNet  Google Scholar 

  13. Defranceschi A., Vitali E.: Limits of minimum problems with convex obstacles for vector valued functions. Appl. Anal. 52(1–4), 1–33 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. El Jarroudi M., Brillard A.: Relaxed Dirichlet problem and shape optimization within the linear elasticity framework. NoDEA Nonlinear Differ. Equ. Appl. 11(4), 511–528 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Galdi G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, I. Springer, New York (1994)

    Google Scholar 

  16. Henrot A., Pierre M.: Variation et optimisation de formes. Une analyse géométrique. Mathématiques & Applications (Berlin), Vol. 48. Springer, Berlin, 2005

  17. Hesla T.I.: Collision of smooth bodies in a viscous fluid: A mathematical investigation. Ph.D. Thesis, Minnesota, 2005

  18. Hillairet M.: Lack of collision between solid bodies in a 2D incompressible viscous flow. Preprint, ENS Lyon, 2006

  19. Jaeger W., Mikelić A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001)

    Article  MATH  Google Scholar 

  20. Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  21. Málek J., Rajagopal K.R.: Mathematical issues concerning the Navier–Stokes equations and some of its generalizations. Evolutionary Equations Vol. II. Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam, pp. 371–459, 2005

  22. Moffat H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1 (1964)

    Article  ADS  Google Scholar 

  23. Nitsche J.A.: On Korn’s second inequality. RAIRO Anal. Numer. 15, 237–248 (1981)

    MATH  MathSciNet  Google Scholar 

  24. Priezjev N.V., Darhuber A.A., Troian S.M.: Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 041608 (2005)

    Article  ADS  Google Scholar 

  25. Priezjev N.V., Troian S.M.: Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)

    Article  MATH  ADS  Google Scholar 

  26. Sohr H.: The Navier–Stokes equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  27. Temam R.: Navier–Stokes equations. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Bucur.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucur, D., Feireisl, E. & Nečasová, Š. Boundary Behavior of Viscous Fluids: Influence of Wall Roughness and Friction-driven Boundary Conditions. Arch Rational Mech Anal 197, 117–138 (2010). https://doi.org/10.1007/s00205-009-0268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0268-z

Keywords

Navigation