Skip to main content
Log in

Quotients of Boolean algebras and regular subalgebras

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Let \({\mathbb{B}}\) and \({\mathbb{C}}\) be Boolean algebras and \({e: \mathbb{B}\rightarrow \mathbb{C}}\) an embedding. We examine the hierarchy of ideals on \({\mathbb{C}}\) for which \({ \bar{e}: \mathbb{B}\rightarrow \mathbb{C} / \fancyscript{I}}\) is a regular (i.e. complete) embedding. As an application we deal with the interrelationship between \({\fancyscript{P}(\omega)/{{\rm fin}}}\) in the ground model and in its extension. If M is an extension of V containing a new subset of ω, then in M there is an almost disjoint refinement of the family ([ω]ω)V. Moreover, there is, in M, exactly one ideal \({\fancyscript{I}}\) on ω such that \({(\fancyscript{P}(\omega)/{{\rm fin}})^V}\) is a dense subalgebra of \({(\fancyscript{P}(\omega)/\fancyscript{I})^M}\) if and only if M does not contain an independent (splitting) real. We show that for a generic extension V[G], the canonical embedding

$$\fancyscript{P}^V(\omega){/}{\rm fin}\hookrightarrow \fancyscript{P}(\omega){/}(U(Os)(\mathbb{B}))^G$$

is a regular one, where \({U(Os)(\mathbb{B})}\) is the Urysohn closure of the zero-convergence structure on \({\mathbb{B}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balcar B., Franek F., Hruška J.: Exhaustive zero-convergence structures on Boolean algebras. Acta. Univ. Carol. Math. Phys. 40(2), 27–41 (1999)

    MATH  Google Scholar 

  2. Balcar B., Jech T., Pazák T.: Complete CCC Boolean algebras, the order sequential topology, and a problem of von Neumann. Bull. Lond. Math. Soc. 37(6), 885–898 (2005)

    Article  MATH  Google Scholar 

  3. Balcar B., Pelant J., Simon P.: The space of ultrafilters on N covered by nowhere dense sets. Fund. Math. 110, 11–24 (1980)

    MATH  MathSciNet  Google Scholar 

  4. Balcar, B., Simon, P.: Disjoint refinement. In: Handbook of Boolean Algebras. vol. 2, pp. 333–386. North-Holland Publishing Co., Amsterdam (1989)

  5. Farah I.: Semiselective coideals. Mathematika 45(1), 79–103 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hechler S.H.: Generalizations of almost disjointness, c-sets, and the Baire number of β NN. Gen. Top. Appl. 8, 93–110 (1978)

    Article  MathSciNet  Google Scholar 

  7. Jech T.: Multiple Forcing, Cambridge Tracts in Mathematics, vol. 88. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  8. Koppelberg S.: Handbook of Boolean Algebras, vol. 1. North-Holland Publishing Co, Amsterdam (1989)

    Google Scholar 

  9. Kunen K.: Set Theory, An Introduction to Independence Proofs. North-Holland Publishing Co, Amsterdam (1980)

    MATH  Google Scholar 

  10. Kurilić M.S., Pavlović A.: A posteriori convergence in complete Boolean algebras with the sequential topology. Ann. Pure Appl. Log. 148, 49–62 (2007)

    Article  MATH  Google Scholar 

  11. Mathias A.R.D.: Happy families. Ann. Math. Log. 12(1), 59–111 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Miller, A.W.: Rational perfect set forcing. In: Axiomatic Set Theory (Boulder, Colo., 1983), Contemp. Math., vol. 31, pp. 143–159. Amer. Math. Soc., Providence, RI (1984)

  13. Pazák, T.: Exhaustive Structures on Boolean Algebras. Ph.D. Thesis (2007)

  14. Rubin M.: A Boolean algebra with few subalgebras, interval Boolean algebras and retractiveness. Trans. Am. Math. Soc. 278(1), 65–89 (1983)

    Article  MATH  Google Scholar 

  15. Soukup L.: Nagata’s conjecture and countably compact hulls in generic extensions. Topol. Appl. 155(4), 347–353 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Vladimirov D.A.: Boolean Algebras. Nauka, Moskow (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pazák.

Additional information

Supported in part by the GAAV Grant IAA100190509 and by the Research Program CTS MSM 0021620845.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balcar, B., Pazák, T. Quotients of Boolean algebras and regular subalgebras. Arch. Math. Logic 49, 329–342 (2010). https://doi.org/10.1007/s00153-010-0174-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-010-0174-y

Keywords

Mathematics Subject Classification (2000)

Navigation