Skip to main content
Log in

Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider weak (“Leray”) solutions to the stationary Navier–Stokes system with Oseen and rotational terms, in an exterior domain. It is shown the velocity may be split into a constant times the first column of the fundamental solution of the Oseen system, plus a remainder term decaying pointwise near infinity at a rate which is higher than the decay rate of the Oseen tensor. This result improves the theory by Kyed (Q Appl Math 71:489–500, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deuring, P.: The single-layer potential associated with the time-dependent Oseen system. In: Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics. Chalkida, Greeece, May 11–13, 2006, pp. 117–125 (2006)

  2. Deuring, P., Kračmar, S.: Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: approximation by flows in bounded domains. Math. Nachr. 269–270, 86–115 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deuring, P., Kračmar, S., Nečasová, Š.: A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies. Discrete Contin. Dyn. Syst. Ser. S 3, 237–253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deuring, P., Kračmar, S., Nečasová, Š.: On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies. SIAM J. Math. Anal. 43, 705–738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deuring, P., Kračmar, S., Nečasová, Š.: Linearized stationary incompressible flow around rotating and translating bodies: asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity. J. Differ. Equ. 252, 459–476 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deuring, P., Kračmar, S., Nečasová, Š.: A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: improved decay estimates of the velocity and its gradient. Discrete Contin. Dyn. Syst. 2011, 351–361 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Deuring, P., Kračmar, S., Nečasová, Š.: Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity. J. Differ. Equ. 255, 1576–1606 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deuring, P., Kračmar, S., Nečasová, Š.: Linearized stationary incompressible flow around rotating and translating bodies-Leray solutions. Discrete Contin. Dyn. Syst. Ser. S 7, 967–979 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deuring, P., Kračmar, Š., Necasová, Š.: A leading term for the velocity of stationary viscous incompressible flow performing a rotation and a translation. Discrete Contin. Dyn. Syst. Ser. A 37, 261–281 (2017)

  10. Deuring, P., Varnhorn, W.: On Oseen resolvent estimates. Differ. Integral Equ. 23, 1139–1149 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Eidelman, S.D.: On fundamental solutions of parabolic systems II. Mat. Zb. 53, 73–136 (1961). (Russian)

    MathSciNet  Google Scholar 

  12. Farwig, R.: The stationary exterior 3D-problem of Oseen and Navier–Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211, 409–447 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farwig, R.: An \(L^{q}\)-analysis of viscous fluid flow past a rotating obstacle. Tôhoku Math. J. 58, 129–147 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Farwig, R.: Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle. Banach Cent. Publ. 70, 73–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farwig, R., Galdi, G.P., Kyed, M.: Asymptotic structure of a Leray solution to the Navier–Stokes flow around a rotating body. Pacific J. Math. 253, 367–382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farwig, R., Hishida, T.: Stationary Navier–Stokes flow around a rotating obstacle. Funkc. Ekvacioj 50, 371–403 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Farwig, R., Hishida, T.: Asymptotic profiles of steady Stokes and Navier–Stokes flows around a rotating obstacle. Ann. Univ. Ferrara Sez. VII 55, 263–277 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farwig, R., Hishida, T.: Asymptotic profile of steady Stokes flow around a rotating obstacle. Manuscr. Math. 136, 315–338 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Farwig, R., Hishida, T.: Leading term at infinity of steady Navier–Stokes flow around a rotating obstacle. Math. Nachr. 284, 2065–2077 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Farwig, R., Hishida, T., Müller, D.: \(L^q\)-theory of a singular “winding” integral operator arising from fluid dynamics. Pac. J. Math. 215, 297–312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Farwig, R., Krbec, M., Nečasová, Š.: A weighted \(L^q\) approach to Stokes flow around a rotating body. Ann. Univ. Ferrara Sez. VII. 54, 61–84 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farwig, R., Krbec, M., Nečasová, Š.: A weighted \(L^q\)-approach to Oseen flow around a rotating body. Math. Methods Appl. Sci. 31, 551–574 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Farwig, R., Neustupa, J.: On the spectrum of a Stokes-type operator arising from flow around a rotating body. Manuscr. Math. 122, 419–437 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farwig, R., Neustupa, J.: On the spectrum of an Oseen-type operator arising from fluid flow past a rotating body in \(L^q_{\sigma }(\Omega )\). Tohoku Math. J. 62, 287–309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. I. Linearised steady problems, Springer tracts in natural philosophy, vol. 38. Springer, New York (1998)

  26. Galdi, G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, pp. 653–791. North-Holland, Amsterdam (2002)

    Chapter  Google Scholar 

  27. Galdi, G.P.: Steady flow of a Navier–Stokes fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. Springer, New York (2011)

    MATH  Google Scholar 

  29. Galdi, G.P., Kyed, M.: Steady-state Navier–Stokes flows past a rotating body: Leray solutions are physically reasonable. Arch. Ration. Mech. Anal. 200, 21–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Galdi, G.P., Kyed, M.: Asymptotic behavior of a Leray solution around a rotating obstacle. Prog. Nonlinear Diff. Equ. Appl. 60, 251–266 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Galdi, G.P., Kyed, M.: A simple proof of \(L^q\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: strong solutions. Proc. Am. Math. Soc. 141, 573–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Galdi, G.P., Kyed, M.: A simple proof of \(L^q\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: weak solutions. Proc. Am. Math. Soc. 141, 1313–1322 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Galdi, G.P., Silvestre, A.L.: Strong solutions to the Navier–Stokes equations around a rotating obstacle. Arch. Ration. Mech. Anal. 176, 331–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Galdi, G.P., Silvestre, A.L.: The steady motion of a Navier–Stokes liquid around a rigid body. Arch. Ration. Mech. Anal. 184, 371–400 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Galdi, G.P., Silvestre, A.L.: Further results on steady-state flow of a Navier–Stokes liquid around a rigid body. Existence of the wake. RIMS Kôkyûroku Bessatsu B1, 108–127 (2008)

    Google Scholar 

  36. Geissert, M., Heck, H., Hieber, M.: \(L^{p}\) theory of the Navier–Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596, 45–62 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Hishida, T.: An existence theorem for the Navier–Stokes flow in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 150, 307–348 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hishida, T.: The Stokes operator with rotating effect in exterior domains. Analysis 19, 51–67 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hishida, T.: \(L^q\) estimates of weak solutions to the stationary Stokes equations around a rotating body. J. Math. Soc. Jpn. 58, 744–767 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hishida, T., Shibata, Y.: Decay estimates of the Stokes flow around a rotating obstacle. RIMS Kôkyûroku Bessatsu B1, 167–186 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Hishida, T., Shibata, Y.: \(L_p\)-\(L_q\) estimate of the Stokes operator and Navier–Stokes flows in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 193, 339–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kračmar, S., Krbec, M., Nečasová, Š., Penel, P., Schumacher, K.: On the \(L^q\)-approach with generalized anisotropic weights of the weak solution of the Oseen flow around a rotating body. Nonlinear Anal. 71, e2940–e2957 (2009)

    Article  MATH  Google Scholar 

  43. Kračmar, S., Nečasová, Š., Penel, P.: Estimates of weak solutions in anisotropically weighted Sobolev spaces to the stationary rotating Oseen equations. IASME Trans. 2, 854–861 (2005)

    MathSciNet  Google Scholar 

  44. Kračmar, S., Nečasová, Š., Penel, P.: Anisotropic \(L^2\) estimates of weak solutions to the stationary Oseen type equations in \( \mathbb{R} ^{3}\) for a rotating body. RIMS Kôkyûroku Bessatsu B1, 219–235 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Kračmar, S., Nečasová, Š., Penel, P.: Anisotropic \(L^2\) estimates of weak solutions to the stationary Oseen type equations in 3D-exterior domain for a rotating body. J. Math. Soc. Jpn. 62, 239–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kračmar, S., Novotný, A., Pokorný, M.: Estimates of Oseen kernels in weighted \(L^p\) spaces. J. Math. Soc. Jpn. 53, 59–111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kračmar, S., Penel, P.: Variational properties of a generic model equation in exterior 3D domains. Funkc. Ekvacioj 47, 499–523 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kračmar, S., Penel, P.: New regularity results for a generic model equation in exterior 3D domains. Banach Center Publ. Wars. 70, 139–155 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kyed, M.: Periodic Solutions to the Navier–Stokes Equations, Habilitation Thesis. Technische Universität Darmstadt, Darmstadt (2012)

  50. Kyed, M.: Asymptotic profile of a linearized flow past a rotating body. Q. Appl. Math. 71, 489–500 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kyed, M.: On a mapping property of the Oseen operator with rotation. Discrete Contin. Dyn. Syst. Ser. S 6, 1315–1322 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kyed, M.: On the asymptotic structure of a Navier–Stokes flow past a rotating body. J. Math. Soc. Jpn. 66, 1–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Neri, U.: Singular Integrals. Lecture Notes in Mathematics, vol. 200. Springer, Berlin (1971)

    Book  Google Scholar 

  54. Nečasová, Š.: Asymptotic properties of the steady fall of a body in viscous fluids. Math. Methods Appl. Sci. 27, 1969–1995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nečasová, Š.: On the problem of the Stokes flow and Oseen flow in \(\mathbb{R}^{3}\) with Coriolis force arising from fluid dynamics. IASME Trans. 2, 1262–1270 (2005)

    MathSciNet  Google Scholar 

  56. Nečasová, Š., Schumacher, K.: Strong solution to the Stokes equations of a flow around a rotating body in weighted \(L^q\) spaces. Math. Nachr. 284, 1701–1714 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Solonnikov, V.A.: A priori estimates for second order parabolic equations, Trudy Mat. Inst. Steklov. 70:133–212 (1964) (Russian); English translation: AMS Translations 65:51–137 (1967)

  58. Solonnikov, V.A.: Estimates of the solutions of a nonstationary linearized system of Navier–Stokes equations, Trudy Mat. Inst. Steklov. 70:213–317 (1964) (Russian); English translation: AMS Translations 75:1–116 (1968)

  59. Stein, E.M.: Singular Integrals and Differentiability of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  60. Thomann, E.A., Guenther, R.B.: The fundamental solution of the linearized Navier–Stokes equations for spinning bodies in three spatial dimensions - time dependent case. J. Math. Fluid Mech. 8, 77–98 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Deuring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deuring, P., Kračmar, S. & Nečasová, Š. Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity. Z. Angew. Math. Phys. 68, 16 (2017). https://doi.org/10.1007/s00033-016-0760-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0760-x

Keywords

Mathematics Subject Classification

Navigation