Skip to main content
Log in

Chronology protection in stationary 3D spacetimes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study chronology protection in stationary, rotationally symmetric space-times in 2 + 1 dimensional gravity, focusing especially on the case of negative cosmological constant. We show that in such spacetimes closed timelike curves must either exist all the way to the boundary or, alternatively, the matter stress tensor must violate the null energy condition in the bulk. We also show that the matter in the closed timelike curve region gives a negative contribution to the conformal weight from the point of view of the dual conformal field theory. We illustrate these properties in a class of examples involving rotating dust in antide Sitter space, and comment on the use of the AdS/CFT correspondence to study chronology protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hawking, The chronology protection conjecture, Phys. Rev. D 46 (1992) 603 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. K.S. Thorne, Closed timelike curves, prepared for 13th conference on General Relativity and Gravitation (GR13), June 29–July 4, Cordoba, Argentina (1992).

  3. M. Visser, The quantum physics of chronology protection, gr-qc/0204022 [INSPIRE].

  4. B.S. Kay, M.J. Radzikowski and R.M. Wald, Quantum field theory on space-times with a compactly generated Cauchy horizon, Commun. Math. Phys. 183 (1997) 533 [gr-qc/9603012] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. L. Dyson, Chronology protection in string theory, JHEP 03 (2004) 024 [hep-th/0302052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. N. Drukker, B. Fiol and J. Simon, Gödel’s universe in a supertube shroud, Phys. Rev. Lett. 91 (2003)231601 [hep-th/0306057] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. E.G. Gimon and P. Hořava, Over-rotating black holes, Gödel holography and the hypertube, hep-th/0405019 [INSPIRE].

  8. M.S. Costa, C.A. Herdeiro, J. Penedones and N. Sousa, Hagedorn transition and chronology protection in string theory, Nucl. Phys. B 728 (2005) 148 [hep-th/0504102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Raeymaekers, D. Van den Bleeken and B. Vercnocke, Chronology protection and the stringy exclusion principle, JHEP 04 (2011) 037 [arXiv:1011.5693] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

  11. C. Herdeiro, Special properties of five-dimensional BPS rotating black holes, Nucl. Phys. B 582 (2000) 363 [hep-th/0003063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Caldarelli, D. Klemm and W. Sabra, Causality violation and naked time machines in AdS 5, JHEP 05 (2001) 014 [hep-th/0103133] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M.M. Caldarelli, D. Klemm and P.J. Silva, Chronology protection in Anti-de Sitter, Class. Quant. Grav. 22 (2005) 3461 [hep-th/0411203] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. Dabholkar, N. Iizuka, A. Iqubal and M. Shigemori, Precision microstate counting of small black rings, Phys. Rev. Lett. 96 (2006) 071601 [hep-th/0511120] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Raeymaekers, D. Van den Bleeken and B. Vercnocke, Relating chronology protection and unitarity through holography, JHEP 04 (2010) 021 [arXiv:0911.3893] [INSPIRE].

    Article  ADS  Google Scholar 

  16. W.J. van Stockum, The gravitational field of a distribution of particles rotating about an axis of symmetry, Proc. Roy. Soc. Edinburgh 57 (1937) 135 [INSPIRE].

    MATH  Google Scholar 

  17. K. Gödel, An example of a new type of cosmological solutions of Einstein’s field equations of graviation, Rev. Mod. Phys. 21 (1949) 447 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. M. Rooman and P. Spindel, Gödel metric as a squashed Anti-de Sitter geometry, Class. Quant. Grav. 15 (1998) 3241 [gr-qc/9804027] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. P. Menotti and D. Seminara, Closed timelike curves and the energy condition in (2 + 1)-dimensional gravity, Phys. Lett. B 301 (1993) 25 [Erratum ibid. B 307 (1993) 404] [hep-th/9212078] [INSPIRE].

  20. S. Deser and B. Laurent, Stationary axisymmetric solutions of three-dimensional Einstein gravity, Gen. Rel. Grav. 18 (1986) 617 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Mars and J.M. Senovilla, Axial symmetry and conformal Killing vectors, Class. Quant. Grav. 10 (1993) 1633 [gr-qc/0201045] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962) 566 [Erratum ibid. 4 (1963) 998].

    Google Scholar 

  24. G.S. Hall, T. Morgan and Z. Perjes, Three-dimensional space-times, Gen. Rel. Grav. 19 (1987) 1137.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. C. Fefferman and C.R. Graham, Conformal invariants, in Elie Cartan et les Mathématiques d’aujourd’hui, Astérisque (1985) 95.

  26. J. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. R. Bousso, Holography in general space-times, JHEP 06 (1999) 028 [hep-th/9906022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. E.K. Boyda, S. Ganguli, P. Hořava and U. Varadarajan, Holographic protection of chronology in universes of the Godel type, Phys. Rev. D 67 (2003) 106003 [hep-th/0212087] [INSPIRE].

    ADS  Google Scholar 

  29. W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44S10 (1966) 1 [Erratum ibid. B 48 (1967) 463].

  30. M. Lubo, M. Rooman and P. Spindel, (2 + 1)-dimensional stars, Phys. Rev. D 59 (1999) 044012 [gr-qc/9806104] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. O. Coussaert and M. Henneaux, Selfdual solutions of (2 + 1) Einstein gravity with a negative cosmological constant, hep-th/9407181 [INSPIRE].

  32. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris Raeymaekers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeymaekers, J. Chronology protection in stationary 3D spacetimes. J. High Energ. Phys. 2011, 24 (2011). https://doi.org/10.1007/JHEP11(2011)024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)024

Keywords

Navigation