Skip to main content
Log in

Determination of the individual phase properties from the measured grid indentation data

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Statistical distribution of grid indentation data measured in multiphase materials can be significantly affected by the presence of an interface between adjacent materials. The influence of an interface on the distribution of measured indentation moduli was therefore characterized in model metal–metal, ceramic–ceramic, and metal-ceramic composites. The change of properties near the interface was simulated by finite element method and experimentally verified by indentation in proximity of the boundary between two phases with distinctly different mechanical properties varying the depth of penetration and the distance from the interface. Subsequently, the conditional probability of measuring near the interface was quantified by beta distribution function with parameters dependent on the size of the volume/area affected by the presence of the interface. Using this approach, the intrinsic properties of the individual materials were successfully extracted from the experimental grid indentation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  2. J. Menčík, D. Munz, E. Quandt, E.R. Weppelmann, and M.V. Swain: Determination of elastic-modulus of thin-layers using nanoindentation. J. Mater. Res. 12, 2475 (1997).

    Article  Google Scholar 

  3. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  4. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  5. ISO 14577-1: Metallic materials - Instrumented indentation test for hardness and materials parameters - Part 1: Test method (ISO 14577-1:2015).

  6. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  7. G. Constantinides, K.S. Ravi Chandran, F-J. Ulm, and K.J. Van Vliet: Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Mater. Sci. Eng., A 430, 189 (2006).

    Article  Google Scholar 

  8. N.X. Randall, M. Vandamme, and F-J. Ulm: Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces. J. Mater. Res. 24, 679 (2009).

    Article  CAS  Google Scholar 

  9. K. Durst, M. Göken, and H. Vehoff: Finite element study for nanoindentation measurements on two-phase materials. J. Mater. Res. 19, 85–94 (2004).

    Article  CAS  Google Scholar 

  10. P. Haušild, J. Nohava, and P. Pilvin: Characterisation of strain-induced martensite in a metastable austenitic stainless steel by nanoindentation. Strain 47, 129 (2011).

    Article  Google Scholar 

  11. J. Nohava, P. Haušild, Š. Houdková, and R. Enžl: Comparison of isolated indentation and grid indentation methods for HVOF sprayed cermets. J. Therm. Spray Technol. 21, 651 (2012).

    Article  CAS  Google Scholar 

  12. J.J. Vlassak and W.D. Nix: Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 67, 1045 (1993).

    Article  Google Scholar 

  13. J.J. Vlassak and W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223 (1994).

    Article  Google Scholar 

  14. P. Haušild, A. Materna, and J. Nohava: Characterization of anisotropy in hardness and indentation modulus by nanoindentation. Metallogr., Microstruct., Anal. 3, 5 (2014).

    Article  Google Scholar 

  15. A. Materna, P. Haušild, and J. Nohava: A numerical investigation of the effect of cubic crystals orientation on the indentation modulus. Acta Physica Polonica, A 128, 693 (2015).

    Article  CAS  Google Scholar 

  16. J. Menčík and M.V. Swain: Characterisation of materials using micro-indentation tests with pointed indenters. Mater. Forum 18, 277 (1994).

    Google Scholar 

  17. J. Menčík and M.V. Swain: Errors associated with depth-sensing microindentation tests. J. Mater. Res. 10, 1491 (1995).

    Article  Google Scholar 

  18. A.C. Fischer-Cripps: Nanoindentation, 3rd ed. (Springer, New York, 2011).

    Book  Google Scholar 

  19. J.C. Hay, A. Bolshakov, and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  20. Marc 2015: Volume A, Theory and User Information (MSC.Software Corporation, Newport Beach, 2015).

    Google Scholar 

  21. J. Matějíček, B. Nevrlá, J. Čech, M. Vilémová, V. Klevarová, and P. Haušild: Mechanical and thermal properties of individual phases formed in sintered tungsten-steel composites. Acta Physica Polonica, A 128, 718 (2015).

    Article  Google Scholar 

  22. R.M. Christensen: Mechanics of Composite Materials (Wiley, New York, 1979).

    Google Scholar 

  23. E. Lassner and W-D. Schubert: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, New York, 1999).

    Book  Google Scholar 

  24. V. Brožek, P. Ctibor, J. Matějíček, R. Mušálek, and Z. Weiss: Tungsten coatings and free standing parts. In Proc.: Metal 2013, Tanger: Brno, Czech Republic, 2013; p. 6.

    Google Scholar 

  25. J.F. Shackelford, and W. Alexander: CRC Materials Science and Engineering Handbook, 3rd ed. (CRC Press, Boca Raton, 2001).

    Google Scholar 

  26. D. Leisen, I. Kerkamm, E. Bohn, and M. Kamlah: A novel and simple approach for characterizing the Young’s modulus of single particles in a soft matrix by nanoindentation. J. Mater. Res. 27, 3073 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was carried out in the frame of the research project 14-36566 G (Czech Science Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Haušild.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haušild, P., Materna, A., Kocmanová, L. et al. Determination of the individual phase properties from the measured grid indentation data. Journal of Materials Research 31, 3538–3548 (2016). https://doi.org/10.1557/jmr.2016.375

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.375

Navigation