Skip to main content
Log in

Inter-molecular Electronic Transfer

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The transport of electric charge is an important phenomenon in the systems like interacting quantum dots and molecules, and in polymers, including DNA molecules. We expect that in these nanostructure systems the key role is played by the interaction of the charge carriers with the optical phonons. We show the role of the multiple scattering of the charge carriers on the optical phonons in the inter-molecular transfer. The charge carrier transport based on this mechanism will be discussed theoretically and compared with the earlier experimental results on the charge transport in molecular Donor-Acceptor charge transfer crystals and also in other systems. In order to treat theoretically the electron transfer between two zero-dimensional nanostructures, we will use the model of two interacting quantum dots coupled by the electron inter-dot tunneling mechanism. A connection with the popular Marcus semiclassical charge transfer theory between molecules is also shown. We will use the nonequilibrium quantum electronic transport theory based on the nonequilibrium Green’s functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. O. Kelley, and J. K. Barton, Science, 283, 375 (1999).

    Article  CAS  Google Scholar 

  2. M. Samoç, and D. F. Williams, J. Chem. Phys., 78, 1924 (1983).

    Article  Google Scholar 

  3. D. J. Thouless, Phys. Rev. Lett., 39, 1167 (1977).

    Article  CAS  Google Scholar 

  4. P. Tran, B. Alavi, and G. Gruner, Phys. Rev. Lett., 85, 1564 (2000).

    Article  CAS  Google Scholar 

  5. H. Tributsch, and L. Pohlmann, Science, 279, 1891 (1998).

    Article  CAS  Google Scholar 

  6. K. Král, and P. Zdeněk, Physica E, 29, 341 (2005).

    Article  Google Scholar 

  7. R. Marcus, Journal of Electroanalytical Chemistry, 438, 251 (1997).

    Article  CAS  Google Scholar 

  8. K. Král, and Z. Khás, Phys. Rev. B, 57, R2061 (1998).

    Article  Google Scholar 

  9. K. Král, P. Zdeněk, and Z. Khás, Nanotechnology, IEEE Transaction on, 3, 17 (2004); K. Král, P. Zdeněk, Z. Khás, Surface Science 566-568, 321-326 (2004).

    Article  Google Scholar 

  10. A. J. Leggett, S. Chakravarty, A. T. Dorsey, Mathew P. A. Fisher, Anupam Garg and W. Zewrger, Rev. Mod. Phys. 59, 1 (1987).

    Article  CAS  Google Scholar 

  11. A. Troisi, and G. Orlandi, Chem. Phys. Lett., 344, 509 (2001).

    Article  CAS  Google Scholar 

  12. E. M. Conwell, and S. V. Rakhmanova, Proc. Natl. Acad. Sci., 97, 4556 (2000).

    Article  CAS  Google Scholar 

  13. E. M. Conwell, Proc. Natl. Acad. Sci., 102, 8795 (2005).

    Article  CAS  Google Scholar 

  14. G. D. Mahan, Many-Particle Physics, 2nd Ed., Plenum Press, New York.

  15. E. M. Lifshitz, and L. P. Pitaevskii, Physical Kinetics, Butterworth-Heinemann. Reprint edition.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Král, K., Menšík, M. Inter-molecular Electronic Transfer. MRS Online Proceedings Library 1207, 905 (2009). https://doi.org/10.1557/PROC-1207-N09-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1207-N09-05

Navigation