2019 Volume 9 Issue 5
Article Contents

Lijun Zhang, Jianming Zhang, Yuzhen Bai, Robert Hakl. EXPLICIT PEAKON SOLUTIONS TO A FAMILY OF WAVE-BREAKING EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1987-1998. doi: 10.11948/20190061
Citation: Lijun Zhang, Jianming Zhang, Yuzhen Bai, Robert Hakl. EXPLICIT PEAKON SOLUTIONS TO A FAMILY OF WAVE-BREAKING EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1987-1998. doi: 10.11948/20190061

EXPLICIT PEAKON SOLUTIONS TO A FAMILY OF WAVE-BREAKING EQUATIONS

  • The singular traveling wave solutions of a general 4-parameter family equation which unifies the Camass-Holm equation, the Degasperis-Procesi equation and the Novikov equation are investigated in this paper. At first, we obtain the explicit peakon solutions for one of its specific case that $a=(p+2)c$, $b=(p+1)c$ and $c=1$, which is referred to a generalized Camassa-Holm-Novikov (CHN) equation, by reducing it to a second-order ordinary differential equation (ODE) and solving its associated first-order integrable ODE. By observing the characteristics of peakon solutions to the CHN equation, we construct the peakon solutions for the general 4-parameter breaking wave equation. It reveals that singularities of the peakon solutions come up only when the solutions attain singular points of the equation, which might be a universal principal for all singular traveling wave solutions for wave breaking equations.
    MSC: 34C23, 34C60, 35B65, 35Q35
  • 加载中
  • [1] S. C. Anco, P. L. Stlva, I. L. Freire, A family of wave-breaking equations generalizing the Camassa-Holm and Novikov equations, J. Math Phys., 2014, 56(9), 091506.

    Google Scholar

    [2] S. Batwa, W. Ma, A study of lump-type and interaction solutions to a (3+1)-dimensional Jimbo-Miwa-like equation. Comp. Math. Appl., 2018, 76(7), 1576–1582.

    Google Scholar

    [3] R. Camassa, D.D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 1993, 71, 1661–1664. doi: 10.1103/PhysRevLett.71.1661

    CrossRef Google Scholar

    [4] A. Constantin, W. A. Strauss, Stability of Peakons, Comm. Pure Appl. Math., 2000, 53, 603–610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L

    CrossRef Google Scholar

    [5] A. Degasperis, M. Procesi, Asymptotic integrability, In: Symmetry and Perturbation Theory, (Eds. A. Degasperis and G. Gaeta) World Scientific, NJ, 1999, 23–37.

    Google Scholar

    [6] H. Ding, Z.Q. Lu, L.Q. Chen, Nonlinear isolation of transverse vibration of pre-pressure beams, J. Sound Vib. 2019, 442, 738–751. doi: 10.1016/j.jsv.2018.11.028

    CrossRef Google Scholar

    [7] A. Geyera, V. Manosab, Singular solutions for a class of traveling wave equations arising in hydrodynamics, Nonlinear Anal-Real World Appl., 2016, 31, 57–76. doi: 10.1016/j.nonrwa.2016.01.009

    CrossRef Google Scholar

    [8] J. Gu, Y. Zhang, H. Dong, Dynamic behaviors of interaction solutions of (3+1)-dimensional Shallow Water wave equation, Comp. Math. Appl., 2018, 76(6), 1408–1419. doi: 10.1016/j.camwa.2018.06.034

    CrossRef Google Scholar

    [9] D. D. Holm, A. N. W. Hone, A class of equations with peakon and pulson solutions, J. Nonlinear Math. Phys., 2005, 12, 380–394. doi: 10.2991/jnmp.2005.12.s1.31

    CrossRef Google Scholar

    [10] T. Ha, H. Liu, On traveling wave solutions of the θ-equation of dispersive type, J. Math. Anal. Appl., 2015, 421, 399–414. doi: 10.1016/j.jmaa.2014.06.058

    CrossRef Google Scholar

    [11] J. Ha, H. Zhang, Q. Zhao, Exact solutions for a Dirac-type equation with N-fold Darboux transformation, J. Appl. Anal. Compu., 2019, 9(1), 200–210.

    Google Scholar

    [12] M. Han, L. Zhang, Y. Wang, C.M. Khalique, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal-Real World Appl., 2019, 47, 236–250. doi: 10.1016/j.nonrwa.2018.10.012

    CrossRef Google Scholar

    [13] J. Lenells, Traveling wave solutions of the Camassa-Holm equation, J. Differ. Equations, 2005, 217(2), 393–430. doi: 10.1016/j.jde.2004.09.007

    CrossRef Google Scholar

    [14] F. Li, Q. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Comp., 2016, 274, 383–392. doi: 10.1016/j.amc.2015.11.018

    CrossRef Google Scholar

    [15] F. Li, J. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 2012, 385, 1005-1014. doi: 10.1016/j.jmaa.2011.07.018

    CrossRef Google Scholar

    [16] J. Li, Geometric properties and exact traveling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation. J. Nonlinear Modeling Analysis, 2019, 1(1), 1–10.

    Google Scholar

    [17] J. Li, Singular traveling wave equations: Bifurcation and Exact Solutions, Beijing: Science Press, 2013.

    Google Scholar

    [18] Y. Liu, H. Dong, Y. Zhang, Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys. 2019, 9(1), 465-481.

    Google Scholar

    [19] Z. Liu, R. Wang, Z. Jing, Peaked wave solutions of Camassa-Holm equation, Chaos, Solitons Fractals, 2004, 19, 77–92. doi: 10.1016/S0960-0779(03)00082-1

    CrossRef Google Scholar

    [20] C. Lu, L. Xie, H. Yang, Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation, Comp. Math. Appl. 2019, 77, 3154–3171. doi: 10.1016/j.camwa.2019.01.022

    CrossRef Google Scholar

    [21] V. S. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 2009, 42, 342002. doi: 10.1088/1751-8113/42/34/342002

    CrossRef Google Scholar

    [22] F. Song, Z. Yu, H. Yang, Modeling and analysis of fractional neutral disturbance waves in arterial vessels, Math. Model Natural Phenomena 2019, 14, 301. doi: 10.1051/mmnp/2018072

    CrossRef Google Scholar

    [23] Y. Wang, M. Zhu, Blow-up phenomena and persistence property for the modified b-family of equations, J. Diff. Eqs, 2017, 262, 1161–1191. doi: 10.1016/j.jde.2016.09.027

    CrossRef Google Scholar

    [24] X. Xu, Y. Sun, Two symmetry constraints for a generalized Dirac integrable hierarchy, J. Math. Anal. Appl., 2018, 458, 1073–1090. doi: 10.1016/j.jmaa.2017.10.017

    CrossRef Google Scholar

    [25] H. Zhao, W. Ma, Mixed lump-kink solutions to the KP equation, Comp. Math. Appl., 2017, 74, 1399–1405. doi: 10.1016/j.camwa.2017.06.034

    CrossRef Google Scholar

    [26] L. Zhang, Y. Wang, C. M. Khlique, Y. Bai, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Compu., 2018, 8(6), 1938–1958.

    Google Scholar

    [27] L. Zhang, C. M. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Disc. Cont. Dyn. Sys.-S, 2018, 11(4), 777–790.

    Google Scholar

    [28] X. Zheng, Y. Shang, X. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Meth. Appl. Sci. 2017, 40, 2623–2633. doi: 10.1002/mma.4187

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(1649) PDF downloads(353) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint