Skip to main content
Log in

Weak solutions of the Robin problem for the Oseen system

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

We study the Robin problem for the Oseen system in the Sobolev space \(W^{1,q}(\varOmega ;{{\mathbb {R}}}^m)\times L^q(\varOmega )\) on a bounded domain \(\varOmega \subset {{\mathbb {R}}}^m\) with Lipschitz boundary for \(m=2\) or \(m=3\). We prove the unique solvability of the problem for \(3/2<q<3\) and \(\partial \varOmega \) Lipschitz, and for \(1<q<\infty \) and \(\partial \varOmega \) of class \({{\mathcal {C}}}^1\). Then we study the problem on unbounded domains with compact Lipschitz boundary. First we study the problem for the homogeneous Oseen system with \((\mathbf{u},p)\in W^{1,q}_\mathrm{loc}({\overline{\varOmega }} ;{{\mathbb {R}}}^m)\times L^q_\mathrm{loc}({\overline{\varOmega }} )\) and the additional condition \(\mathbf{u}(\mathbf{x})\rightarrow 0\), \(p(\mathbf{x})\rightarrow 0\) as \(|\mathbf{x}|\rightarrow \infty \). Then we study the Robin problem for the non-homogeneous Oseen system in homogeneous Sobolev spaces \(D^{1,q}(\varOmega ,{{\mathbb {R}}}^m)\times L^q(\varOmega )\). Denote by \({\tilde{W}}^{1,q}(\varOmega ;{{\mathbb {R}}}^m)\) the closure of \({{\mathcal {C}}}_c^\infty ({{\mathbb {R}}}^m;{{\mathbb {R}}}^m)\) in \(D^{1,q}(\varOmega ,{{\mathbb {R}}}^m)\). If \(\varOmega \subset {{\mathbb {R}}}^3\) is an unbounded domain with compact Lipschitz boundary and \(3/2<q<3\) then there exists a unique solution of the Robin problem in \({\tilde{W}}^{1,q}(\varOmega ,{{\mathbb {R}}}^3)\times L^q(\varOmega )\). We characterize all solutions of the problem in \(D^{1,q}(\varOmega ,{{\mathbb {R}}}^3)\times L^q(\varOmega )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Adams, D.R., Hedberg, L.I.: Function spaces and potential theory. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  3. Amrouche, Ch., Bouzit, H., Razafison, U.: On the two and three dimensinal Oseen Potentials. Potential Anal. 34, 163–179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amrouche, Ch., Meslameni, M., Nečasová, Š.: The stationary Oseen equations in an exterior domain: an approach in weighted Sobolev spaces. J. Diff. Equ. 256, 1955–1986 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amrouche, Ch., Nguyen, H.H.: \(L^p\)-weighted theory for Navier-Stokes equations in exterior domains. Commun. Math. Anal. 8, 41–69 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Amrouche, Ch., Razafison, U.: On the Oseen problem in three-dimensional exterior domains. Anal. Appl. 4, 133–162 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amrouche, Ch., Rodríguez-Bellido, M.A.: On the very weak solution for the Oseen and Navier-Stokes equations. Discrete Cont. Dyn. Syst. 3, 159–183 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Amrouche, Ch., Rodríguez-Bellido, M.A.: Stationary Stokes, Oseen and Navier-Stokes equations with singular data. Arch. Rational Mech. Anal. 199, 597–651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bennett, C., Sharpley, R.: Interpolation of operators. Academic Press, Orlando (1988)

    MATH  Google Scholar 

  10. Brewster, K., Mitrea, D., Mitrea, I., Mitrea, M.: Extending Sobolev functions with partially vanishing traces from locally \((\epsilon,\delta )\)-domains and applications to mixed boundary problems. J. Funct. Anal. 266, 4314–4421 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choe, H.J., Kim, E.H.: Dirichlet problem for the stationary Navier-Stokes system on Lipschitz domains. Commun. Part. Diff. Equ. 36, 1919–1944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cwikel, M.: Real and complex interpolation and extrapolation of compact operators. Duke Math. J. 66, 333–343 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dautray, R., Lions, J.L.: Mathematical analysis and numerical methods for sciences and technology. Physical origins and classical methods, vol. 1. Springer, Berlin (1990)

    MATH  Google Scholar 

  14. Deuring, P., Kračmar, S.: Artificial boundary conditions for the Oseen system in 3D exterior domains. Analysis 20, 65–90 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Devore, R.A., Sharpley, R.C.: Besov spaces on domains in \(R^d\). Trans. Math. Soc. 335, 843–864 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Farwig, R.: The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211, 409–447 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Finn, R.: On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations, steady state problems. Springer, New York (2011)

    MATH  Google Scholar 

  19. Heck, H., Kim, H., Kozono, H.: Weak solutions of the stationary Navier-Stokes equations for a viscous incompressible fluid past an obstacle. Math. Ann. 356, 653–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, D., Kim, H.: \(L^q\)-estimates for the stationary Oseen equations on exterior domains. J. Diff. Equ. 257, 3669–3699 (2014)

    Article  MATH  Google Scholar 

  21. Kim, D., Kim, H., Park, S.: Very weak solutions of the stationary Stokes equations on exterior domains. Adv. Differ. Equ. 20, 1119–1164 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Kohr, M., Medková, D., Wendland, W.L.: On the Oseen-Brinkman flow around an \((m-1)\)-dimensional solid obstacle. Monatsh. Math. 183, 269–302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kohr, M., Pop, I.: Viscous incompressible flow for low Reynolds numbers. WIT Press, Southampton (2004)

    MATH  Google Scholar 

  24. Kufner, A., John, O., Fučík, S.: Function spaces. Academia, Prague (1977)

    MATH  Google Scholar 

  25. Laursen, K.B., Neumann, M.M.: An introduction to local spectral theory. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  26. Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unital close to VMO. Func. Anal. Appl. 43, 217–235 (2009)

    Article  MATH  Google Scholar 

  27. Maz’ya, V.G., Poborchi, S.V.: Differentiable functions on bad domains. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  28. Medková, D.: Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system. Acta Appl. Math. 116, 281–304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Medková, D.: \(L^q\)-solution of the Robin problem for the Oseen system. Acta Appl. Math. 142, 61–79 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Medková, D.: The Laplace equation. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  31. Mitrea, I., Mitrea, M.: Multi-layer potentials and boundary problems for higher-order elliptic systems in Lipschitz domains. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  32. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque, Paris (2012)

    MATH  Google Scholar 

  33. Nečas, J.: Les méthodes directes en théorie des équations élliptiques. Academia, Prague (1967)

    MATH  Google Scholar 

  34. Russo, A., Tartaglione, A.: On the Oseen and Navier-Stokes systems with a slip boundary condition. Appl. Math. Lett. 22, 674–678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Russo, R., Simader, ChG: A note on the existence of solutions to the Oseen system in Lipschitz domains. J. Math. Fluid. Mech. 8, 64–76 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schechter, M.: Principles of functional analysis. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  37. Tartar, L.: An introduction to Sobolev Spaces and interpolation spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  38. Triebel, H.: Theory of function spaces. Birkhäuser, Basel (1983)

    Book  MATH  Google Scholar 

  39. Triebel, H.: Theory of function spaces III. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  40. Triebel, H.: Theory of function spaces II. Springer, Basel (2010)

    MATH  Google Scholar 

  41. Varnhorn, W.: The Stokes equations. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

  42. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Medková.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by RVO: 67985840 and GAČR grant No. GA16-03230S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medková, D. Weak solutions of the Robin problem for the Oseen system. J Elliptic Parabol Equ 5, 189–213 (2019). https://doi.org/10.1007/s41808-019-00038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-019-00038-9

Keywords

Mathematics Subject Classification

Navigation