Skip to main content
Log in

Phytotoxicity of ZnO/kaolinite nanocomposite—is anchoring the right way to lower environmental risk?

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The importance of studies on photoactive zinc oxide nanoparticles (ZnO NPs) increases with increasing environmental pollution. Since the ZnO NPs (and NPs in general) also pose an environmental risk, and since an understanding of the risk is still not sufficient, it is important to prevent their spread into the environment. Anchoring on phyllosilicate particles of micrometric size is considered to be a useful way to address this problem, however, so far mainly on the basis of leaching tests in pure water. In the present study, the phytotoxicity of kaolinite/ZnO NP (10, 30, and 50 wt.%) nanocomposites in concentrations 10, 100, and 1000 mg/dm3 tested on white mustard (Sinapis alba) seedlings was found to be higher (relative lengths of roots are ~ 1.4 times lower) compared with seedlings treated with pristine ZnO NPs. The amount of Zn accumulated from the nanocomposites in white mustard tissues was ~ 2 times higher than can be expected based on the ZnO content in the nanocomposites compared with the ZnO content (100 wt.%) in pristine ZnO NPs. For the false fox-sedge (Carex otrubae) plants, the amount of Zn accumulated in roots and leaves was ~ 2.25 times higher and ~ 2.85 times higher, respectively, compared with that of the pristine ZnO NPs (with respect to the ZnO content). Increased phytotoxicity of the nanocomposites and higher uptake of Zn by plants from the nanocomposites in comparison with pristine ZnO NPs suggest that the immobilization of ZnO NPs on the kaolinite does not reduce the environmental risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Funding

This work was financially supported by the Ministry of Education, Youth and Sports of Czech Republic from European Regional Development Fund project “Centre for Experimental Plant Biology”: No. CZ.02.1.01/0.0/0.0/16_019/0000738 and by grants SP2019/31 and LQ1602 (National Programme of Sustainability II – IT4 Innovations Excellence in Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radka Podlipná.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokarský, J., Mamulová Kutláková, K., Podlipná, R. et al. Phytotoxicity of ZnO/kaolinite nanocomposite—is anchoring the right way to lower environmental risk?. Environ Sci Pollut Res 26, 22069–22081 (2019). https://doi.org/10.1007/s11356-019-05529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05529-9

Keywords

Navigation