Skip to main content
Log in

On prevarieties of logic

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

It is proved that every prevariety of algebras is categorically equivalent to a ‘prevariety of logic’, i.e., to the equivalent algebraic semantics of some sentential deductive system. This allows us to show that no nontrivial equation in the language \(\wedge ,\vee ,\circ \) holds in the congruence lattices of all members of every variety of logic, and that being a (pre)variety of logic is not a categorical property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J.: How many variables does a quasivariety need? Algebra Universalis 27, 44–48 (1990)

    Article  MathSciNet  Google Scholar 

  2. Blok, W.J., Hoogland, W.: The Beth property in algebraic logic. Studia Logica 83, 49–90 (2006)

    Article  MathSciNet  Google Scholar 

  3. Blok, W.J., Pigozzi, D.: Local deduction theorems in algebraic logic. In: Andréka, H., Monk, J.D., Németi, I. (eds.) Algebraic Logic, pp. 75–109. Colloquia Mathematica Societatis János Bolyai 54, Budapest (1988)

    MATH  Google Scholar 

  4. Blok, W.J., Pigozzi, D.: Algebraizable Logics. Memoirs of the American Mathematical Society 396. Amer. Math. Soc., Providence (1989)

    Article  MathSciNet  Google Scholar 

  5. Blok, W.J., Pigozzi, D.: Abstract algebraic logic and the deduction theorem. Manuscript (1997) [See http://orion.math.iastate.edu/dpigozzi/ for updated version (2001)]

  6. Blok, W.J., Raftery, J.G.: On congruence modularity in varieties of logic. Algebra Universalis 45, 15–21 (2001)

    Article  MathSciNet  Google Scholar 

  7. Blok, W.J., Raftery, J.G.: Assertionally equivalent quasivarieties. Int. J. Algebra Comput. 18, 589–681 (2008)

    Article  MathSciNet  Google Scholar 

  8. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics. Springer, New York (1981)

    MATH  Google Scholar 

  9. Cabrer, L.M., Priestley, H.: A general framework for product representations: bilattices and beyond. Logic J. IGPL 23, 816–841 (2015)

    Article  MathSciNet  Google Scholar 

  10. Czelakowski, J.: Protoalgebraic Logics. Kluwer, Dordrecht (2001)

    Book  Google Scholar 

  11. Czelakowski, J., Pigozzi, D.: Amalgamation and interpolation in abstract algebraic logic. In: Caicedo, X., Montenegro, C.H. (eds.) Models, Algebras and Proofs. Lecture Notes in Pure and Applied Mathematics, vol. 203, pp. 187–265. Marcel Dekker, New York (1999)

    MATH  Google Scholar 

  12. Font, J.M.: Belnap’s four-valued logic and De Morgan lattices. Logic J. IGPL 5, 413–440 (1997)

    Article  MathSciNet  Google Scholar 

  13. Font, J.M.: Abstract Algebraic Logic: An Introductory Textbook. Studies in Logic 60. College Publications, London (2016)

    MATH  Google Scholar 

  14. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices. An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier, New York (2007)

    MATH  Google Scholar 

  15. García, O.C., Taylor, W.: The Lattice of Interpretability Types of Varieties. Memoirs of the American Mathematical Society 50. Amer. Math. Soc., Providence (1984)

    Article  MathSciNet  Google Scholar 

  16. Hagemann, J.: On regular and weakly regular congruences. Preprint No. 75, Technische Hochschule Darmstadt (1973)

  17. Herrmann, B.: Equivalential and algebraizable logics. Studia Logica 57, 419–436 (1996)

    Article  MathSciNet  Google Scholar 

  18. Hobby, D., McKenzie, R.: The Structure of Finite Algebras. Contemporary Mathematics 76. Amer. Math. Soc., Providence (1988)

  19. Jónsson, B.: Congruence varieties. Algebra Universalis 10, 355–394 (1980)

    Article  MathSciNet  Google Scholar 

  20. Kearnes, K.A., Kiss, E.W.: The Shape of Congruence Lattices. Memoirs of the American Mathematical Society 222(1046). Amer. Math. Soc., Providence (2013)

  21. McKenzie, R.: An algebraic version of categorical equivalence for varieties and more general algebraic categories. In: Ursini, A., Aglianò, P. (eds.) Logic and Algebra. Lecture Notes in Pure and Applied Mathematics, vol. 180, pp. 211–243. Marcel Dekker, New York (1996)

    Google Scholar 

  22. Moraschini, T.: An algebraic characterization of adjunctions between generalized quasi-varieties. J. Symb. Logic 83, 899–919 (2018)

    Article  MathSciNet  Google Scholar 

  23. Moraschini, T., Raftery, J.G., Wannenburg, J.J.: Epimorphisms, definability and cardinalities. Studia Logica (2019). https://doi.org/10.1007/s11225-019-09846-5

  24. Neumann, W.D.: Representing varieties of algebras by algebras. J. Aust. Math. Soc. 11, 1–8 (1970)

    Article  MathSciNet  Google Scholar 

  25. Neumann, W.D.: On Mal’cev conditions. J. Aust. Math. Soc. 17, 376–384 (1974)

    Article  Google Scholar 

  26. Raftery, J.G.: On the variety generated by involutive pocrims. Rep. Math. Logic 42, 71–86 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Raftery, J.G.: A non-finitary sentential logic that is elementarily algebraizable. J. Logic Comput. 20, 969–975 (2010)

    Article  MathSciNet  Google Scholar 

  28. Taylor, W.: Characterizing Mal’cev conditions. Algebra Universalis 3, 351–397 (1973)

    Article  MathSciNet  Google Scholar 

  29. Taylor, W.: The fine spectrum of a variety. Algebra Universalis 5, 263–303 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Raftery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 689176 (project “Syntax Meets Semantics: Methods, Interactions, and Connections in Substructural logics”). The first author was supported by project CZ.02.2.69/0.0/0.0/17_050/0008361, OPVVV MŠMT, MSCA-IF Lidské zdroje v teoretické informatice. The second author was supported in part by the National Research Foundation (NRF) of South Africa (UID 85407). Both authors thank the University of Pretoria Staff Exchange Bursary Programme and the DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (RT18ALG/006) for partially funding the first author’s travel to Pretoria in 2017 and 2018, respectively. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the CoE-MaSS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraschini, T., Raftery, J.G. On prevarieties of logic. Algebra Univers. 80, 37 (2019). https://doi.org/10.1007/s00012-019-0611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-019-0611-7

Keywords

Mathematics Subject Classification

Navigation