Photosynthetica 2021, 59(1):228-236 | DOI: 10.32615/ps.2021.014

A comparison of the photosynthesis response to arsenic stress in two Pteris cretica ferns

V. ZEMANOVÁ1, 2, D. PAVLÍKOVÁ1, F. HNILIČKA3, M. PAVLÍK1, 2, H. ZÁMEČNÍKOVÁ1, T. HLAVSA4
1 Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic
2 Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Praha 4, Czech Republic
3 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic
4 Department of Statistics, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic

The present study investigated the effect of arsenic (As) on photosynthesis and other selected physiological parameters in two ferns. The ferns (Pteris cretica 'Albo-lineata' and 'Parkerii') subjected to As doses of 100 and 250 mg kg-1 for three months, showed different As accumulation, which was higher in Albo-lineata. Overall, the obtained results indicated significant differences between studied ferns. The individual effects of As and growing period on all parameters were very variable. However, As doses generally caused a decrease of net photosynthetic rate, stomatal conductance, transpiration rate, maximum quantum yield of PSII, and photosynthetic pigments. The sampling period effect was significant for magnesium content of Parkerii (decrease) and contents of photosynthetic pigments of Albo-lineata (increase) and Parkerii (decrease). Results showed that Parkerii had higher sensitivity to As doses than Albo-lineata, which was also reflected by the higher free glycine content and its increase by As doses.

Additional key words: chlorophyll; contamination; free amino acid; gas exchange; hyperaccumulator.

Received: January 4, 2021; Revised: February 5, 2021; Accepted: February 15, 2021; Published: March 18, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ZEMANOVÁ, V., PAVLÍKOVÁ, D., HNILIČKA, F., PAVLÍK, M., ZÁMEČNÍKOVÁ, H., & HLAVSA, T. (2021). A comparison of the photosynthesis response to arsenic stress in two Pteris cretica ferns. Photosynthetica59(1), 228-236. doi: 10.32615/ps.2021.014
Download citation

References

  1. Abbas G., Murtaza B., Bibi I. et al.: Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. - Int. J. Environ. Res. Public Health 15: 59, 2018. Go to original source...
  2. Ahsan N., Lee D.-G., Alam L. et al.: Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. - Proteomics 8: 3561-3576, 2008. Go to original source...
  3. Allakhverdiev S.I.: Optimising photosynthesis for environmental fitness. - Funct. Plant Biol. 47: III-VII, 2020. Go to original source...
  4. Anjum S.A., Tanveer M., Hussain S. et al.: Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. - Water Air Soil Poll. 228: 13, 2017. Go to original source...
  5. Asgher M., Ahmed S., Sehar Z. et al.: Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.). - J. Hazard. Mater. 401: 123365, 2021. Go to original source...
  6. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  7. Azizur Rahman M., Hasegawa H., Mahfuzur Rahman M. et al.: Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. - Chemosphere 67: 1072-1079, 2007. Go to original source...
  8. Buschmann C.: Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. - Photosynth. Res. 92: 261-271, 2007. Go to original source...
  9. Campos N.V., Araújo T.O., Arcanjo-Silva S. et al.: Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress. - Physiol. Plantarum 157: 135-146, 2016. Go to original source...
  10. Claveria R.J.R., Perez T.R., Apuan M.J.B. et al.: Pteris melano-caulon Fée is an As hyperaccumulator. - Chemosphere 236: 124380, 2019. Go to original source...
  11. Dave R., Tripathi R.D., Dwivedi S. et al.: Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. - J. Hazard. Mater. 262: 1123-1131, 2013. Go to original source...
  12. Eisenhut M., Bauwe H., Hagemann M.: Glycine accumulation is toxic for the cyanobacterium Synechocystis sp. strain PCC 6803, but can be compensated by supplementation with magnesium ions. - FEMS Microbiol. Lett. 277: 232-237, 2007. Go to original source...
  13. Eze V.C., Harvey A.P.: Extractive recovery and valorisation of arsenic from contaminated soil through phytoremediation using Pteris cretica. - Chemosphere 208: 484-492, 2018. Go to original source...
  14. Farooq M.A., Li L., Ali B. et al.: Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars. - Environ. Sci. Pollut. R. 22: 10699-10712, 2015. Go to original source...
  15. Fayiga A.O., Ma L.Q.: Arsenic uptake by two hyperaccumulator ferns from four arsenic contaminated soils. - Water Air Soil Poll. 168: 71-89, 2005. Go to original source...
  16. Gago J., Coopman R.E., Cabrera H.M. et al.: Photosynthesis limitations in three fern species. - Physiol. Plantarum 149: 599-611, 2013. Go to original source...
  17. Gao M., Qi Y., Song W., Xu H.: Effects of di-n-butyl phthalate and di (2-ethylhexyl) phthalate on the growth, photosynthesis, and chlorophyll fluorescence of wheat seedlings. - Chemosphere 151: 76-83, 2016. Go to original source...
  18. Gusman G.S., Oliveira J.A., Farnese F.S., Cambraia J.: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. - Acta Physiol. Plant. 35: 1201-1209, 2013. Go to original source...
  19. Hasanuzzaman M., Borhannuddin Bhuyan M.H.M., Nahar K. et al.: Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. - Agronomy-Basel 8: 31, 2018. Go to original source...
  20. Kang T., Wu H.D., Lu B.Y. et al.: Low concentrations of glycine inhibit photorespiration and enhance the net rate of photosynthesis in Caragana korshinskii. - Photosynthetica 56: 512-519, 2018. Go to original source...
  21. Karimi N., Siyahat Shayesteh L., Ghasmpour H., Alavi M.: Effects of arsenic on growth, photosynthetic activity, and accumulation in two new hyperaccumulating populations of Isatis cappadocica Desv. - J. Plant Growth Regul. 32: 823-830, 2013. Go to original source...
  22. Kofroňová M., Mašková P., Lipavská H.: Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. - Planta 248: 19-35, 2018. Go to original source...
  23. Küpper H., Küpper F., Spiller M.: Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. - J. Exp. Bot. 47: 259-266, 1996. Go to original source...
  24. Küpper H., Küpper F., Spiller M.: In situ detection of heavy metal substituted chlorophylls in water plants. - Photosynth. Res. 58: 123-133, 1998. Go to original source...
  25. Li C.X., Feng S.L., Shao Y. et al.: Effects of arsenic on seed germination and physiological activities of wheat seedlings. -J. Environ. Sci. 19: 725-732, 2007. Go to original source...
  26. Liu W., Fu Y., Hu G. et al.: Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). - Planta 226: 785-795, 2007. Go to original source...
  27. Luongo T., Ma L.Q.: Characteristics of arsenic accumulation by Pteris and non-Pteris ferns. - Plant Soil 277: 117, 2005. Go to original source...
  28. Meharg A.A.: Variation in arsenic accumulation-hyperaccumu-lation in ferns and their allies. - New Phytol. 157: 25-31, 2003. Go to original source...
  29. Meharg A.A., Hartley-Whitaker J.: Arsenic uptake and meta-bolism in arsenic resistant and nonresistant plant species. - New Phytol. 154: 29-43, 2002. Go to original source...
  30. Meneguelli-Souza A.C., Vitória A.P., Vieira T.O. et al.: Ecophysiological responses of Eichhornia crassipes (Mart.) Solms to As5+ under different stress. - Photosynthetica 54: 243-250, 2016. Go to original source...
  31. Mullineaux P.M., Rausch T.: Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. - Photosynth. Res. 86: 459-474, 2005. Go to original source...
  32. Nesterenko T.V., Tikhomirov A.A., Shikhov V.N.: Ontogenetic approach to the assessment of plant resistance to prolonged stress using chlorophyll fluorescence induction method. - Photosynthetica 44: 321-332, 2006. Go to original source...
  33. Nishida K., Kodama N., Yonemura S. et al.: Rapid response of leaf photosynthesis in two fern species Pteridium aquilinum and Thelypteris dentata to changes in CO2 measured by tunable diode laser absorption spectroscopy. - J. Plant Res. 128: 777-789, 2015. Go to original source...
  34. Paoli L., Landi M.: The photosynthetic performance of sterile and fertile sporophytes in a natural population of the fern Dryopteris affinis. - Photosynthetica 51: 312-316, 2013. Go to original source...
  35. Pavlíková D., Zemanová V., Pavlík M. et al.: Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. - PLoS ONE 15: e0233055, 2020. Go to original source...
  36. Ralph P.J., Burchett M.D.: Photosynthetic response of Halophila ovalis to heavy metal stress. - Environ. Pollut. 103: 91-101, 1998. Go to original source...
  37. Ringli C., Keller B., Ryser U.: Glycine-rich proteins as structural components of plant cell walls. - Cell Mol. Life Sci. 58: 1430-1441, 2001. Go to original source...
  38. Saffari M., Fathi H., Emadi M. et al.: Uptake, translocation, and transformation of arsenic by four fern species in arsenic-spiked soils. - Commun. Soil Sci. Plant Anal. 40: 3420-3434, 2009. Go to original source...
  39. Shaibur M.R., Sera K., Kawai S.: Effect of arsenic on concentrations and translocations of mineral elements in the xylem of rice. - J. Plant Nutr. 39: 365-376, 2016. Go to original source...
  40. Sicher R.C., Bunce J.A.: Adjustments of net photosynthesis in Solanum tuberosum in response to reciprocal changes in ambient and elevated growth CO2 partial pressures. - Physiol. Plantarum 112: 55-61, 2001. Go to original source...
  41. Singh N., Ma L.Q., Srivastava M., Rathinasabapathi B.: Metabolic adaptation to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. - Plant Sci. 170: 274-282, 2006. Go to original source...
  42. Singh R., Jha A.B., Misra A.N., Sharma P.: Differential responses of growth, photosynthesis, oxidative stress, metals accumulation and NRAMP genes in contrasting Ricinus communis genotypes under arsenic stress. - Environ. Sci. Pollut. R. 26: 31166-31177, 2019. Go to original source...
  43. Skoczowski A., Rut G., Oliwa J., Kornas A.: Sporulation modifies the photosynthetic activity of sporotrophophyll leaves of Platycerium bifurcatum. - Photosynthetica 58: 488-496, 2020. Go to original source...
  44. Soltan M.E., Rashed M.N.: Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. - Adv. Environ. Res. 7: 321-334, 2003. Go to original source...
  45. Srivastava S., Sinha P., Sharma Y.K.: Status of photosynthetic pigments, lipid peroxidation and anti-oxidative enzymes in Vigna mungo in presence of arsenic. - J. Plant Nutr. 40: 298-306, 2017. Go to original source...
  46. Srivastava S., Srivastava A.K., Singh B. et al.: The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata. - Biol. Plantarum 57: 385-389, 2013. Go to original source...
  47. Stoeva N., Bineva T.: Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. - Bulg. J. Plant Physiol. 29: 87-95, 2003.
  48. Sunil B., Saini D., Bapatla R.B. et al.: Photorespiration is complemented by cyclic electron flow and the alternative oxidase pathway to optimize photosynthesis and protect against abiotic stress. - Photosynth. Res. 139: 67-79, 2019. Go to original source...
  49. Tränkner M., Tavakol E., Jákli B.: Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. - Physiol. Plantarum 163: 414-431, 2018. Go to original source...
  50. Tripathi P., Tripathi R.D., Singh R.P. et al.: Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. - Environ. Sci. Pollut. R. 20: 884-896, 2013. Go to original source...
  51. Tu C., Ma L.Q.: Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. - Environ. Pollut. 135: 333-340, 2005. Go to original source...
  52. Tu C., Ma L.Q., Bondada B.: Arsenic accumulation in the hyperaccumulator Chinese Brake (Pteris vittata L.) and its utilization potential for phytoremediation. - J. Environ. Qual. 31: 1671-1675, 2002. Go to original source...
  53. Volkova L., Tausz M., Bennett L.T., Dreyer E.: Interactive effects of high irradiance and moderate heat on photosynthesis, pigments, and tocopherol in the tree-fern Dicksonia antarctica. - Funct. Plant Biol. 36: 1046-1056, 2009. Go to original source...
  54. Wan X.M., Lei M., Chen T.B. et al.: Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L. - Environ. Sci. Pollut. R. 22: 16631-16639, 2015. Go to original source...
  55. Wang H.B., Wong M.H., Lan C.Y. et al.: Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. - Environ. Pollut. 145: 225-233, 2007. Go to original source...
  56. Wang H.B., Xie F., Yao Y.Z. et al.: The effects of arsenic and induced-phytoextraction methods on photosynthesis in Pteris species with different arsenic-accumulating abilities. - Environ. Exp. Bot. 75: 298-306, 2012. Go to original source...
  57. Wang Y., Chai L., Yang Z. et al.: Chlorophyll fluorescence in leaves of Ficus tikoua under arsenic stress. - B. Environ. Contam. Tox. 97: 576-581, 2016. Go to original source...
  58. Yang G.Y., Zhong H., Liu X. et al.: Arsenic distribution, accumulation and tolerance mechanisms of Typha angustifolia in different phenological growth stages. - B. Environ. Contam. Tox. 104: 358-365, 2020. Go to original source...
  59. Yang N., Wang X., Cotrozzi L. et al.: Ozone effects on photosynthesis of ornamental species suitable for urban green spaces of China. - Urban For. Urban Gree. 20: 437-447, 2016. Go to original source...
  60. Ye X., Chen X.F., Deng C.L. et al.: Magnesium-deficiency effects on pigments, photosynthesis and photosynthetic electron transport of leaves, and nutrients of leaf blades and veins in Citrus sinensis seedlings. - Plants-Basel 8: 389, 2019. Go to original source...
  61. Zemanová V., Pavlíková D., Pavlík M.: Free amino acid regulation in fronds and roots of two Pteris cretica L. ferns under arsenic stress. - Plant Soil Environ. 66: 483-492, 2020b. Go to original source...
  62. Zemanová V., Popov M., Pavlíková D. et al.: Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. - BMC Plant Biol. 20: 130, 2020a. Go to original source...
  63. Zhao F.J., McGrath S.P., Meharg A.A.: Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. - Annu. Rev. Plant Biol. 61: 535-559, 2010. Go to original source...