biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 65:68-79, 2021 | DOI: 10.32615/bp.2021.001

HSP70 plays an ambiguous role during viral infections in plants

V. HÝSKOVÁ1, K. BĚLONOŽNÍKOVÁ1, N. ČEŘOVSKÁ2, H. RYŠLAVÁ1, *
1 Department of Biochemistry, Faculty of Science, Charles University, CZ-12843 Prague 2, Czech Republic
2 Institute of Experimental Botany of the Czech Academy of Sciences, CZ-16500 Prague 6, Czech Republic

Heat shock and almost all types of stresses associated with oxidative stress are accompanied by heat shock protein (HSP) expression. HSPs are involved in refolding denatured proteins and directing unrepairable proteins for degradation. Thus, under stress conditions, HSPs help to restore cellular balance. However, in virus-infected plants, HSP70 can have both positive and negative effects because viruses usually recruit HSP70. HSP70 can promote the replication and translation of the viral genome, the formation of viral replication complexes, and the propagation of viral particles from cell to cell and throughout the plant. HSP gene silencing in various virus-host plants systems and the comparison of susceptible and resistant species have shown that HSPs70 accelerate the development of infection. Conversely, during the process known as thermotherapy, the temperature increase inhibits viral replication in some host and virus systems. The success of thermotherapy depends not only on the temperature and treatment period or duration but also on the plant species and viral strain. In this review, we discuss the ambiguous role that HSPs70 play during viral infections in plants towards weighing the balance between their positive and negative functions.

Keywords: acquired tolerance, heat shock, host factor, plant viruses, thermotherapy, virus propagation.

Received: October 2, 2020; Revised: December 14, 2020; Accepted: January 7, 2021; Published online: April 13, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
HÝSKOVÁ, V., BĚLONOŽNÍKOVÁ, K., ČEŘOVSKÁ, N., & RYŠLAVÁ, H. (2021). HSP70 plays an ambiguous role during viral infections in plants. Biologia plantarum65, Article 68-79. https://doi.org/10.32615/bp.2021.001
Download citation

References

  1. Abbas, A., Arif, M., Ali, A.: Use of hot water-thermotherapy to free potato tubers of Potato leaf roll virus (PLRV). - Int. J. Life Sci. sci. Res. 2: 155-162, 2016. Go to original source...
  2. Achachi, A., Ait Barka, E., Ibriz, M.: Recent advances in Citrus psorosis virus. - Virus Disease 25: 261-276, 2014. Go to original source...
  3. Aguilar-Camacho, M., Mora-Herrera, M.E., López-Delgado, H.A.: Potato virus X (PVX) elimination as short and long term effects of hydrogen peroxide and salicylic acid is differentially mediated by oxidative stress in synergism with thermotherapy. - Amer. J. Potato Res. 93: 360-367, 2016. Go to original source...
  4. AlMaarri, K., Massa, R., AlBiski, F.: Evaluation of some therapies and meristem culture to eliminate Potato Y potyvirus from infected potato plants. - Plant Biotechnol. 29: 237-243, 2012. Go to original source...
  5. Alzhanova, D.V., Napuli, A.J., Creamer, R., Dolja, V.V.: Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. - EMBO J. 20: 6997-7007, 2001. Go to original source...
  6. Anaraki, Z.E., Tafreshi, S.A.H., Shariati, M.: Transient silencing of heat shock proteins showed remarkable roles for HSP70 during adaptation to stress in plants. - Environ. exp. Bot. 155: 142-157, 2018. Go to original source...
  7. Anfoka, G., Moshe, A., Fridman, L., Amrani, L., Rotem, O., Kolot, M., Zeidan, M., Czosnek, H., Gorovits, R.: Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. - Sci. Rep. 6: 19715, 2016. Go to original source...
  8. Aparicio, F., Thomas, C.L., Lederer, C., Niu, Y., Wang, D., Maule, A.J.: Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant cytosol. - Plant Physiol. 138: 529-536, 2005. Go to original source...
  9. Asea, A.A.A., Calderwood, S.K., Kaur, P (ed.): Heat Shock Proteins and Plants - Springer, Switzerland, 2016. Go to original source...
  10. Bolhassani, A., Agi, E.: Heat shock proteins in infection. - Clin. chim. Acta 498: 90-100, 2019. Go to original source...
  11. Brunt, A.A., Crabtree, K., Dallwitz, M.J., Gibbs, A.J., Watson, L., Zurcher, E.J. (ed.): Descriptions and Lists from the VIDE Database, CAB International, Wallingford, UK, 1990, ISBN : 9780851986630.
  12. Carr, J.P., Murphy, A.M., Tungadi, T., Yoon, J.Y.: Plant defense signals: players and pawns in plant-virus-vector interactions. - Plant Sci. 279: 87-95, 2019. Go to original source...
  13. Chen, Z., Zhou, T., Wu, X., Hong, Y., Fan, Z., Li, H.: Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana. - Mol. Plant Pathol. 9: 809-817, 2008. Go to original source...
  14. Doubnerova, V., Ryslava, H.: Roles of Hsp70 in plant abiotic stress. - In: Gaur, R.K., Sharma, P. (ed.): Molecular Approaches in Plant Abiotic Stress, Pp. 44-66. CRC Press, Boca Raton - London - New York 2014.
  15. Driedonks, N., Xu, J., Peters, J.L., Park, S., Rieu, I.: Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. - Front Plant Sci. 6: 999, 2015. Go to original source...
  16. Duck, N.B., Folk, W.R.: Hsp70 heat shock protein cognate is expressed and stored in developing tomato pollen. - Plant mol. Biol. 26: 1031-1039, 1994. Go to original source...
  17. Dufresne, P.J., Thivierge, K., Cotton, S., Beauchemin, C., Ide, C., Ubalijoro, E., Laliberté, J.F., Fortin, M.G.: Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. - Virology 374: 217-227, 2008. Go to original source...
  18. Frydman, J.: Folding of newly translated proteins in vivo: the role of molecular chaperones. - Annu. Rev. Biochem. 70: 603-647, 2001. Go to original source...
  19. Gaffar, F.Y., Koch, A.: Catch me if you can! RNA silencing-based improvement of antiviral plant immunity. - Viruses 11: 673, 2019. Go to original source...
  20. Ghazaei, C.: Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens. - J. Med. Microbiol. 66: 259-265, 2017. Go to original source...
  21. Gorovits, R., Czosnek, H.: The involvement of heat shock proteins in the establishment of Tomato yellow leaf curl virus infection. - Front. Plant Sci. 8: 355, 2017. Go to original source...
  22. Gouveia, B.C., Calil, I.P., Machado, J.P., Santos, A.A., Fontes, E.P.: Immune receptors and co-receptors in antiviral innate immunity in plants. - Front. Microbiol. 7: 2139, 2017. Go to original source...
  23. Hafrén, A., Hofius, D., Ronnholm, G., Sonnewald, U., Makinen, K.: HSP70 and its cochaperone CPIP promote Potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions. - Plant Cell 22: 523-535, 2010. Go to original source...
  24. Haq, S.u., Khan, A., Ali, M., Khattak, A.M., Gai, W.-X., Zhang, H.-X., Wei, A.-M., Gong, Z.-H.: Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. - Int. J. Mol. Sci. 20: 5321, 2019. Go to original source...
  25. Hartl, F.U., Bracher, A., Hayer-Hartl, M.: Molecular chaperones in protein folding and proteostasis. - Nature 475: 324-332, 2011. Go to original source...
  26. Heinlein, M.: Plasmodesmata: channels for viruses on the move. - Methods mol. Biol. 1217: 25-52, 2015. Go to original source...
  27. Hofius, D., Maier, A.T., Dietrich, C., Jungkunz, I., Bornke, F., Maiss, E., Sonnewald, U.: Capsid protein-mediated recruitment of host DnaJ-like proteins is required for Potato virus Y infection in tobacco plants. - J. Virol. 81: 11870-11880, 2007. Go to original source...
  28. Hu, G., Dong, Y., Zhang, Z., Fan, X., Ren, F.: Elimination of apple necrosis mosaic virus from potted apple plants by thermotherapy combined with shoot-tip grafting. - Sci. Hort. 252: 310-315, 2019. Go to original source...
  29. Hu, G., Dong, Y., Zhang, Z., Fan, X., Ren, F.: Efficiency of chemotherapy combined with thermotherapy for eliminating grapevine leafroll-associated virus 3 (GLRaV-3). - Sci. Hort. 271: 109462, 2020. Go to original source...
  30. Hu, G.J., Hong, N., Wang, L.P., Hu, H.J., Wang, G.P.: Efficacy of virus elimination from in vitro-cultured sand pear (Pyrus pyrifolia) by chemotherapy combined with thermotherapy. - Crop Protect. 37: 20-25, 2012. Go to original source...
  31. Huang, Y.W., Hu, C.C., Tsai, C.H., Lin, N.S., Hsu, Y.H.: Chloroplast Hsp70 isoform is required for age-dependent tissue preference of Bamboo mosaic virus in mature Nicotiana benthamiana leaves. - Mol. Plant Microbe Interact. 30: 631-645, 2017. Go to original source...
  32. Hyskova, V., Belonoznikova, K., Doricova, V., Kavan, D., Gillarova, S., Henke, S., Synkova, H., Ryslava, H., Cerovska, N. Effects of heat treatment on metabolism of tobacco plants infected with Potato virus Y. - Plant Biol. 2021 Epub ahead of print. PMID: 33417742. Go to original source...
  33. Ivanov, K.I., Eskelin, K., Lohmus, A., Makinen, K.: Molecular and cellular mechanisms underlying potyvirus infection. - J. gen. Virol. 95: 1415-1429, 2014. Go to original source...
  34. Ivanov, K.I., Makinen, K.: Coat proteins, host factors and plant viral replication. - Curr. Opin. Virol. 2: 712-718, 2012. Go to original source...
  35. Jiang, C., Xu, J., Zhang, H., Zhang, X., Shi, J., Li, M., Ming, F.: A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. - Plant Cell Environ. 32: 1046-1059, 2009. Go to original source...
  36. Jiang, S., Lu, Y., Li, K., Lin, L., Zheng, H., Yan, F., Chen, J.: Heat shock protein 70 is necessary for Rice stripe virus infection in plants. - Mol. Plant Pathol. 15: 907-917, 2014. Go to original source...
  37. Jockusch, H., Wiegand, C., Mersch, B., Rajes, D.: Mutants of Tobacco mosaic virus with temperature-sensitive coat proteins induce heat shock response in tobacco leaves. - Mol. Plant Microbe Interact. 7: 914-917, 2001. Go to original source...
  38. Jungkunz, I., Link, K., Vogel, F., Voll, L.M., Sonnewald, S., Sonnewald, U.: AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. - Plant J. 66: 983-995, 2011. Go to original source...
  39. Karasev, A.V.: Genetic diversity and evolution of Closteroviruses. - Annu. Rev. Phytopathol. 38: 293-324, 2000. Go to original source...
  40. Kim, M.Y., Oglesbee M.: Virus-heat shock protein interaction and a novel axis for innate antiviral immunity. - Cells 1: 646-666, 2012. Go to original source...
  41. Király, L., Hafez, Y.M., Fodor, J., Király, Z.: Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. - J. gen. Virol. 89: 799-808, 2008. Go to original source...
  42. Krenz, B., Windeisen, V., Wege, C., Jeske, H., Kleinow, T.: A plastid-targeted heat shock cognate 70 kDa protein interacts with the Abutilon mosaic virus movement protein. - Virology 401: 6-17, 2010. Go to original source...
  43. Kwon, Y., Kabir, M.A., Wang, H.W., Karuppanapandian, T., Moon, J.-C., Ryu, K.H., Lee, G.P., Kim, W.: Elimination of pepper mild mottle virus from infected tobacco (Nicotiana benthamiana L.) plants by callus culture and the sieving technique. - In Vitro cell. dev. Biol. Plant 48: 595-599, 2012. Go to original source...
  44. Lee, J.H., Schoffl, F.: An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. - Mol. gen. Genet. 252: 11-19, 1996. Go to original source...
  45. Li, B., Gao, K., Ren, H., Tang, W.: Molecular mechanisms governing plant responses to high temperatures. - J. integr. Plant Biol. 60: 757-779, 2018. Go to original source...
  46. Liu, J., Pang, X., Cheng, Y., Yin, Y., Zhang, Q., Su, W., Hu, B., Guo, Q., Ha, S., Zhang, J., Wan, H.: The Hsp70 gene family in Solanum tuberosum: genome-wide identification, phylogeny, and expression patterns. - Sci Rep. 8: 16628, 2018. Go to original source...
  47. Lizárraga, A., Ascasíbar, J., González, M.L.: Fast and effective thermotherapy treatment for in vitro virus eradication in apple and pear trees. - Amer. J. Plant Sci. 8: 2474-2482, 2017. Go to original source...
  48. Lohmus, A., Hafrén, A., Makinen, K.: Coat protein regulation by CK2, CPIP, HSP70, and CHIP is required for Potato Virus A replication and coat protein accumulation. - J. Virol. 91: e01316-16, 2017. Go to original source...
  49. Makarova, S., Makhotenko, A., Spechenkova, N., Love, A.J., Kalinina, N.O., Taliansky, M.: Interactive responses of potato (Solanum tuberosum L.) plants to heat stress and infection with Potato virus Y. - Front. Microbiol. 9: 2582, 2018. Go to original source...
  50. Maliogka, V.I., Skiada, F.G., Eleftheriou, E.P., Katis, N.I.: Elimination of a new ampelovirus (GLRaV-Pr) and Grapevine rupestris stem pitting associated virus (GRSPaV) from two Vitis vinifera cultivars combining in vitro thermotherapy with shoot tip culture. - Sci. Hort. 123: 280-282, 2009. Go to original source...
  51. Manganaris, G.A., Economou, A.S., Boubourakas, I.N., Katis, N.I.: Elimination of PPV and PNRSV through thermotherapy and meristem-tip culture in nectarine. - Plant Cell Rep. 22: 195-200, 2003. Go to original source...
  52. Mathew, L., Tiffin, H., Erridge, Z., McLachlan, A., Hunter, D., Pathirana, R.: Efficiency of eradication of Raspberry bushy dwarf virus from infected raspberry (Rubus idaeus) by in vitro chemotherapy, thermotherapy and cryotherapy and their combinations. - Plant Cell Tissue Organ Cult. 144: 133-141, 2021. Go to original source...
  53. Mathioudakis, M.M., Veiga, R., Ghita, M., Tsikou, D., Medina, V., Canto, T., Makris, A.M., Livieratos, I.C.: Pepino mosaic virus capsid protein interacts with a tomato heat shock protein cognate 70. - Virus Res. 163: 28-39, 2012. Go to original source...
  54. Mayer, M.P., Bukau, B.: Hsp70 chaperones: cellular functions and molecular mechanism. - Cell Mol. Life Sci. 62: 670-684, 2005. Go to original source...
  55. Milani, A., Basirnejad, M., Shahbazi, S., Bolhassani, A.: HSP roles as biomarkers and antigens in bacterial and viral infections. - J. Med. Microbiol. Infect. Dis. 4: 1-7, 2016.
  56. Mine, A., Hyodo, K., Tajima, Y., Kusumanegara, K., Taniguchi, T., Kaido, M., Mise, K., Taniguchi, H., Okuno, T.: Differential roles of Hsp70 and Hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus. - J. Virol. 86: 12091-12104, 2012. Go to original source...
  57. Mittler, R., Finka, A., Goloubinoff, P.: How do plants feel the heat? - Trends Biochem. Sci. 37: 118-125, 2012. Go to original source...
  58. Morimoto, R.I., Jurivich, D.A., Kroeger, P.E., Mathur, S.K., Murphy, S.P., Nakai, A., Sarge, K., Abravaya, K., Sistonen, L.T.: Regulation of heat shock gene transcription by a family of heat shock transcription factors. - In: Morimoto, R.I., Tissieres, A., Georgopoulos, C. (eds.): The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Pp. 417-455, 1994, ISBN: 0879694270.
  59. Moshe, A., Gorovits, R., Liu, Y., Czosnek, H.: Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection. - Mol. Plant Pathol. 17: 247-260, 2016. Go to original source...
  60. Nagy, P.D., Wang, R.Y., Pogany, J., Hafren, A., Makinen, K.: Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. - Virology 411: 374-382, 2011. Go to original source...
  61. Nesi, B., Trinchello, D., Lazzereschi, S., Grassotti, A., Ruffoni, B.: Production of lily symptomless virus-free plants by shoot meristem tip culture and in vitro thermotherapy. - Hort. Sci. 44: 217-219, 2009. Go to original source...
  62. Park, C.J., Seo, Y.S.: Heat shock proteins: a review of the molecular chaperones for plant immunity. - Plant Pathol. J. 31: 323-333, 2015. Go to original source...
  63. Peremyslov, V.V., Hagiwara, Y., Dolja, V.V.: HSP70 homolog functions in cell-to-cell movement of a plant virus. - Proc. nat. Acad. Sci. USA 96: 14771-14776, 1999. Go to original source...
  64. Pogany, J., Nagy, P.D.: Activation of Tomato bushy stunt virus RNA-dependent RNA polymerase by cellular heat shock protein 70 is enhanced by phospholipids in vitro. - J. Virol. 89: 5714-5723, 2015. Go to original source...
  65. Prerostova, S., Dobrev, P.I., Kramna, B., Gaudinova, A., Knirsch, V., Spichal, L., Zatloukal, M., Vankova, R.: Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. - Front. Plant Sci. 11: 87, 2020. Go to original source...
  66. Prokhnevsky, A.I., Peremyslov, V.V., Napuli, A.J., Dolja, V.V.: Interaction between long-distance transport factor and Hsp70-related movement protein of Beet yellows virus. - J. Virol. 76: 11003-11011, 2002. Go to original source...
  67. Robert, U., Žel, J., Ravnikar, M.: Thermotherapy in virus elimination from garlic: influences on shoot multiplication from meristems and bulb formation in vitro. - Sci. Hort. 73: 193-202, 1998. Go to original source...
  68. Roggero, P., Pennazio, S.: Thermal inactivation of tomato spotted wilt tospovirus in vivo. - Physiol. mol. Plant Pathol. 51: 35-40, 1997. Go to original source...
  69. Samakovli, D., Ticha, T., Vavrdova, T., Ovecka, M., Luptovciak, I., Zapletalova, V., Kucharova, A., Krenek, P., Krasylenko, Y., Margaritopoulou, T., Roka, L., Milioni, D., Komis, G., Hatzopoulos, P., Samaj, J.: YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis. - Mol. Plant 13: 612-633, 2020. Go to original source...
  70. Song, Z., Pan, F., Lou, X., Wang, D., Yang, C., Zhang, B., Zhang, H.: Genome-wide identification and characterization of Hsp70 gene family in Nicotiana tabacum. - Mol. Biol. Rep. 46: 1941-1954, 2019. Go to original source...
  71. Su, P.H., Li, H.M.: Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. - Plant Physiol. 146: 1231-1241, 2008. Go to original source...
  72. Sun, L., Liu, Y., Kong, X., Zhang, D., Pan, J., Zhou, Y., Wang, L., Li, D., Yang, X.: ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. - Plant Cell Rep. 31: 1473-1484, 2012. Go to original source...
  73. Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L., Banfalvi, Z., Burgyan, J.: Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. - EMBO J. 22: 633-640, 2003. Go to original source...
  74. Taguwa, S., Yeh, M.T., Rainbolt, T.K., Nayak, A., Shao, H., Gestwicki, J.E., Andino, R., Frydman, J.: Zika virus dependence on host Hsp70 provides a protective strategy against infection and disease. - Cell Rep. 26: 906-920, 2019. Go to original source...
  75. Tan, R., Wang, L., Hong, N., Wang, G.: Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. - Plant Cell Tissue Organ Cult. 101: 229-235, 2010. Go to original source...
  76. Usman, M.G., Rafii, M.Y., Martini, M.Y., Yusuff, O.A., Ismail, M.R., Miah, G.: Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. - Biotechnol. Genet. Eng. Rev. 33: 26-39, 2017. Go to original source...
  77. Vaira, A.M., Semeria, L., Crespi, S., Lisa, V., Allavena, A., Accotto, G.P.: Resistance to tospoviruses in Nicotiana benthamiana transformed with the N gene of tomato spotted wilt virus: correlation between transgene expression and protection in primary transformants. - Mol. Plant Microbe Interact. 8: 66-73, 1995. Go to original source...
  78. Verchot, J.: Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. - Front. Plant Sci. 3: 275, 2012. Go to original source...
  79. Wang, A.: Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. - Annu. Rev. Phytopathol. 53: 45-66, 2015. Go to original source...
  80. Wang, M.R., Cui, Z.H., Li, J.W., Hao, X.Y., Zhao, L., Wang, Q.C.: In vitro thermotherapy-based methods for plant virus eradication. - Plant Methods 14: 87, 2018. Go to original source...
  81. Wang, Q., Cuellar, W.J., Rajamaki, M.L., Hirata, Y., Valkonen, J.P.: Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. - Mol. Plant Pathol. 9: 237-250, 2008. Go to original source...
  82. Wang, R.Y., Stork, J., Pogany, J., Nagy, P.D.: A temperature sensitive mutant of heat shock protein 70 reveals an essential role during the early steps of tombusvirus replication. - Virology 394: 28-38, 2009a. Go to original source...
  83. Wang, Y., Bao, Z., Zhu, Y., Hua, J.: Analysis of temperature modulation of plant defense against biotrophic microbes. - Mol. Plant Microbe Interact. 22: 498-506, 2009b. Go to original source...
  84. Wang, W., Vinocur, B., Shoseyov, O., Altman, A.: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. - Trends Plant Sci. 9: 244-252, 2004. Go to original source...
  85. Yang, J., Zhang, F., Cai, N.J., Wu, N., Chen, X., Li, J., Meng, X.F., Zhu, T.Q., Chen, J.P., Zhang, H.M.: A furoviral replicase recruits host HSP70 to membranes for viral RNA replication. - Sci. Rep. 7: 45590, 2017. Go to original source...
  86. Zhao, L., Wang, M.R., Cui, Z.H., Chen, L., Volk, G.M., Wang, Q.C.: Combining thermotherapy with cryotherapy for efficient eradication of apple stem grooving virus from infected in-vitro-cultured apple shoots. - Plant Dis. 102: 1574-1580, 2018. Go to original source...