MMSL 2021, 90(3):120-136 | DOI: 10.31482/mmsl.2021.012

MOLECULAR CHARACTERIZATION OF ALCOHOL–ETHER EXTRACT FROM BOVINE TISSUEOriginal article

Klara Kubelkova ORCID...1*, Martin Hubalek ORCID...2, Pavel Rehulka ORCID...1, Helena Rehulkova ORCID...3, David Friedecky ORCID...4, Jitka Zakova ORCID...1, Ales Macela ORCID...1
1 Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
2 Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic
3 Faculty of Science, University of Hradec Kralove, Czech Republic
4 Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic

It is usual for information to be unavailable regarding the molecular composition of extracts from herbs or animal tissues that are popular in folk medicine. Here, we present analysis of the alcohol–ether extract from bovine tissue analogous to the basic substance used in such commercial products as Retisin, Imuregen, Actovegin, and Solcoseryl. The tested extract contains a whole spectrum of free amino acids, small proteins and oligopeptides of molecular weight up to 10 kDa, various nucleotides, and a small amount of phospholipids. Among the molecules that can explain some biological activities of the extract were identified those of taurine (2-aminoethanesulfonic acid, a derivative of the amino acid cysteine), several defensins, and bactericidal hemoglobin fragments known as hemocidins. All those molecules identified are natural components of bovine tissues, and a substantial number of them might be biologically active in vivo. Others are sources of readily available nutrients.

Keywords: Key words: bovine tissue extract; Juvenil; molecular composition; psychobiotics; biological response modifier; antimicrobial peptides; defensin; hemocidin

Received: March 16, 2021; Revised: March 16, 2021; Accepted: April 7, 2021; Prepublished online: April 22, 2021; Published: September 3, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kubelkova, K., Hubalek, M., Rehulka, P., Rehulkova, H., Friedecky, D., Zakova, J., & Macela, A. (2021). MOLECULAR CHARACTERIZATION OF ALCOHOL–ETHER EXTRACT FROM BOVINE TISSUE. MMSL90(3), 120-136. doi: 10.31482/mmsl.2021.012
Download citation

References

  1. https://www.urmc.rochester.edu/profiles/display/124207
  2. Kubelkova K, Macela A. A short history of Imuregen - an original tissue extract. Mil Med Sci Lett (Voj Zdr Listy). 2019;88(3):1-6. Go to original source...
  3. Dolezal B, Rakusan B, Urbanek G, et al. Existing experiences with tissue preparations RTN. Military Medical Letters. 1956; Suppl. 1, Part II.: 3-14.
  4. Richter J, Stiborova I, Kral V, et al. Glucan supplementation regulates secretory immunity andstress. Am. J. Immunol.. 2017;13(1):81-85. Go to original source...
  5. Svozil V, Richter J, Vetvicka V. High exposure to pollution requires nutritional improvements in children. Arch Nutr Food Sci. 2020;1(2):30-34. Go to original source...
  6. Nam SM, Maeng YS. Wound Healing and Mucin Gene Expression of Human Corneal Epithelial Cells Treated with Deproteinized Extract of Calf Blood. Curr Eye Res. 2019;Nov;44(11):1181-1188. Go to original source... Go to PubMed...
  7. Konturek SJ, Drozdowicz D, Pytko-Polonczyk J, et al. Solcoseryl in prevention of stress-induced gastric lesions and healing of chronic ulcers. J Physiol Pharmacol. 1991;Mar;42(1):73-84. Go to PubMed...
  8. Guekht A, Skoog I, Edmundson S, et al. ARTEMIDA Trial (A Randomized Trial of Efficacy, 12 Months International Double-Blind Actovegin): A Randomized Controlled Trial to Assess the Efficacy of Actovegin in Poststroke Cognitive Impairment. Stroke. 2017;May;48(5):1262-1270. Go to original source... Go to PubMed...
  9. Søndergard SD, Dela F, Helge JW, et al. Actovegin, a non-prohibited drug increases oxidative capacity in human skeletal muscle. Eur J Sport Sci. 2016;Oct;16(7):801-7. Go to original source... Go to PubMed...
  10. Machicao F, Muresanu DF, Hundsberger H, et al. Pleiotropic neuroprotective and metabolic effects of Actovegin's mode of action. J Neurol Sci. 2012;Nov 15;322(1-2):222-7. Go to original source... Go to PubMed...
  11. Kubelkova K, Macela A. Microbiota-gut-brain signaling: a minireview. Mil. Med. Sci. Lett. (Voj. Zdrav. Listy). 2020;89,1-11. Go to original source...
  12. Kubelkova K, Rychlik I, Crhanova M, et al. Gut microbiota alteration by nutritional supplement Imuregen, Mil. Med. Sci. Lett. (Voj. Zdrav. Listy). 2020;89(3):114-125. Go to original source...
  13. Rehulka P, Zahradnikova M, Rehulkova H, et al. Microgradient separation technique for purification and fractionation of permethylated N-glycans before mass spectrometric analyses. J Sep Sci. 2018;May;41(9):1973-1982. Go to original source... Go to PubMed...
  14. Matyash V, Liebisch G, Kurzchalia TV, et al. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008; May;49(5):1137-46. Go to original source... Go to PubMed...
  15. Stübiger G, Pittenauer E, Belgacem O, et al. Analysis of human plasma lipids and soybean lecithin by means of high-performance thin-layer chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2009;Sep;23(17):2711-23. Go to original source... Go to PubMed...
  16. Friedecky D, Bednar P, Prochazka M, et al. Analysis of intracellular nucleotides by capillary electrophoresis-mass spectrometry. Nucleosides Nucleotides Nucleic Acids. 2006;25(9-11):1233-6. Go to original source... Go to PubMed...
  17. Friedecky D, Tomkova J, Maier V, et al. Capillary electrophoretic method for nucleotide analysis in cells: application on inherited metabolic disorders. Electrophoresis. 2007;Feb;28(3):373-80. Go to original source... Go to PubMed...
  18. Yan D, Chen D, Shen J, et al. Bovine lactoferricin is in human articular cartilage and synovium. J Cell Physiol. 2013;228(2):447-456. Go to original source... Go to PubMed...
  19. Cho JH, Sung BH, Kim SC. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim Biophys Acta. 2009;Aug;1788(8):1564-9. Go to original source... Go to PubMed...
  20. Nedjar-Arroume N, Dubois-Delval V, Miloudi K, et al. Isolation and characterization of four antibacterial peptides from bovine hemoglobin. Peptides. 2006;Sep;27(9):2082-9. Go to original source... Go to PubMed...
  21. Machado A, Sforça ML, Miranda A, et al. Truncation of amidated fragment 33-61 of bovine alpha-hemoglobin: effects on the structure and anticandidal activity. Biopolymers. 2007;88(3):413-26. Go to original source... Go to PubMed...
  22. Nedjar-Arroume N, Dubois-Delval V, Adje EY, et al. Bovine hemoglobin: an attractive source of antibacterial peptides. Peptides. 2008;Jun;29(6):969-77. Go to original source... Go to PubMed...
  23. El Idrissi A. Taurine Regulation of Neuroendocrine Function. Adv Exp Med Biol. 2019;1155:977-985. Go to original source... Go to PubMed...
  24. Bastings JJAJ, van Eijk HM, Olde Damink SW, et al. D-amino Acids in Health and Disease: A Focus on Cancer. Nutrients. 2019;Sep 12;11(9):2205. Go to original source... Go to PubMed...
  25. Dodd D, Spitzer MH, Van Treuren W, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;Nov 30;551(7682):648-652. Go to original source... Go to PubMed...
  26. Wang G, Huang S, Wang Y, et al. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci. 2019;Oct;76(20):3917-3937. Go to original source... Go to PubMed...
  27. P Mak P, Wojcik K, Silberring J, et al. Antimicrobial peptides derived from heme-containing proteins: hemocidins. Antonie Van Leeuwenhoek, 2000; Apr;77(3):197-207. Go to original source... Go to PubMed...
  28. Zhao Q, Garreau I, Sannier F, et al. Opioid peptides derived from hemoglobin: hemorphins. Biopolymers. 1997;43(2):75-98. Go to original source... Go to PubMed...
  29. Nyberg F, Sanderson K, Glämsta EL. The hemorphins: a new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers. 1997;43(2):147-56. Go to original source... Go to PubMed...
  30. Ali A, Alzeyoudi SAR, Almutawa SA, et al. Molecular basis of the therapeutic properties of hemorphins. Pharmacol Res. 2020;Aug;158:104855. Go to original source... Go to PubMed...
  31. Giuliani AL, Sarti AC, Di Virgilio F. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett. 2019;Jan;205:16-24. Go to original source... Go to PubMed...
  32. Fliegert R, Heeren J, Koch-Nolte F, et al. Adenine nucleotides as paracrine mediators and intracellular second messengers in immunity and inflammation. Biochem Soc Trans. 2019;Feb 28;47(1):329-337. Go to original source... Go to PubMed...
  33. Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2018;Mar;19(3):175-191. Go to original source... Go to PubMed...
  34. Dolezel B, Rakusan B, Urbanek G, et al. Retisin, a new tissue preparation. Cesk Farm. 1954;Sep;3(7):246-7. Go to PubMed...
  35. Richter J, Sima P, Pfeifer I. Protective and imunomodulative influence of supplementing DNA, comparing of clinical testing and experimental model. Final Research Report of the project No.: NJ 6888-3, Usti nad Labem, CZE, 2004;1-61.
  36. Richter J, Svozil V, Kral V, et al. Effects of dietary nucleotides on immune mechanisms and physical state in children with chronic respiratory problems. Am J Immunol. 2015;11(2):26-32. Go to original source...
  37. Sarkar A, Lehto SM, Harty S, et al. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci. 2016;39(11):763-781. Go to original source... Go to PubMed...