Plant Soil Environ., 2020, 66(10):483-492 | DOI: 10.17221/369/2020-PSE

Free amino acid regulation in fronds and roots of two Pteris cretica L. ferns under arsenic stressOriginal Paper

Veronika Zemanová ORCID...*,1, Daniela Pavlíková1, Milan Pavlík1,2
1 Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic

In the present study, free amino acid (AA) regulation in the arsenic (As) hyperaccumulating ferns was evaluated in a pot experiment to determine the relationship between As stress and the characteristic change in metabolism of AAs. The ferns Pteris cretica cv. Albo-lineata (Pc-Al) and cv. Parkerii (Pc-Pa) were exposed to As treatments at 0, 20, 100, and 250 mg As/kg for 90 days. Greater As content, as well as higher biomass production, were identified in Pc-Al compared with Pc-Pa. Ferns showed changes in the stress metabolism of free AA homeostasis. These results indicate a disturbance in nitrogen metabolism and depletion of pool assimilated carbon metabolism. In the fronds and roots, Pc-Pa accumulated higher amounts of free AAs than Pc-Al. The total free AA content, as well as the ratio of the main AA family pathway (glutamate family), were increased by the accumulation of toxic As in the ferns. Results suggest that Pc-Al tolerates higher As doses better due to changes in AA biosynthesis; however, at higher As doses, Pc-Pa upregulated AA biosynthesis due to As toxicity. The most abundant free AAs of ferns was glutamine, which was enhanced by As. Furthermore, the ratios of selected individual free AAs revealed a characteristic phenotype difference between ferns.

Keywords: amide; metalloid; pyruvate family; serine family; shikimate family; toxicity

Published: October 31, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zemanová V, Pavlíková D, Pavlík M. Free amino acid regulation in fronds and roots of two Pteris cretica L. ferns under arsenic stress. Plant Soil Environ.. 2020;66(10):483-492. doi: 10.17221/369/2020-PSE.
Download citation

References

  1. Ashraf M.A., Maah M.J., Yusoff I. (2011): Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmental Science and Technology, 8: 401-416. Go to original source...
  2. Avezedo Neto A.D., Prisco J.T., Gomes-Filho E. (2009): Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes. Journal of Plant Interactions, 4: 137-144. Go to original source...
  3. Bai C., Reilly C.C., Wood B.W. (2006): Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiology, 140: 433-443. Go to original source... Go to PubMed...
  4. Begum M.C., Islam M.S., Islam M., Amin R., Parvez M.S., Kabir A.H. (2016): Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 104: 266-277. Go to original source... Go to PubMed...
  5. Caille N., Zhao F.J., McGrath S.P. (2005): Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytologist, 165: 755-761. Go to original source... Go to PubMed...
  6. Campos N.V., Araújo T.O., Arcanjo-Silva S., Freitas-Silva L., Azevedo A.A., Nunes-Nesi A. (2016): Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress. Physiologia Plantarum, 157: 135-146. Go to original source... Go to PubMed...
  7. Chaffei C., Pageau K., Suzuki A., Gouia H., Ghorbel M.H., Masclaux-Daubresse C. (2004): Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant and Cell Physiology, 45: 1681-1693. Go to original source... Go to PubMed...
  8. Claveria R.J.R., Perez T.R., Apuan M.J.B., Apuan D.A., Perez R.E.C. (2019): Pteris melanocaulon Fée is an As hyperaccumulator. Chemosphere, 236: 124380. Go to original source... Go to PubMed...
  9. Corea O.R.A., Ki C.Y., Cardenas C.L., Kim S.-J., Brewer S.E., Patten A.M., Davin L.B., Lewis N.G. (2012): Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins. Journal of Biological Chemistry, 287: 11446-11459. Go to original source... Go to PubMed...
  10. Dwivedi S., Tripathi R.D., Tripathi P., Kumar A., Dave R., Mishra S., Singh R., Sharma D., Rai U.N., Chakrabarty D., Trivedi P.K., Adhikari B., Bag M.K., Dhankher O.P., Tuli R. (2010): Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environmental Science and Technology, 44: 9542-9549. Go to original source... Go to PubMed...
  11. Emamverdian A., Ding Y., Mokhberdoran F., Xie Y. (2015): Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015: 1-18. Go to original source... Go to PubMed...
  12. Fayiga A.O., Ma L.Q. (2005): Arsenic uptake by two hyperaccumulator ferns from four arsenic contaminated soils. Water, Air, and Soil Pollution, 168: 71-89. Go to original source...
  13. Finnegan P.M., Chen W.H. (2012): Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology, 3: 182. Go to original source... Go to PubMed...
  14. Fritz C., Mueller C., Matt P., Feil R., Stitt M. (2006): Impact of the C-N status on the amino acid profile in tobacco source leaves. Plant, Cell and Environment, 29: 2055-2076. Go to original source... Go to PubMed...
  15. García-Ríos M., Fujita T., LaRosa P.C., Locy R.D., Clithero J.M., Bressan R.A., Csonka L.N. (1997): Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase. Proceeding of the National Academy of Sciences of the United States of America, 94: 8249-8254. Go to original source... Go to PubMed...
  16. González-Orenga S., Ferrer-Gallego P.P., Laguna E., López-Gresa M.P., Donat-Torres M.P., Verdeguer M., Vicente O., Boscaiu M. (2019): Insights on salt tolerance of two endemic Limonium species from Spain. Metabolites, 9: 294. Go to original source... Go to PubMed...
  17. Gulyás Z., Simon-Sarkadi L., Badics E., Novák A., Mednyánszky Z., Szalai G., Galiba G., Kocsy G. (2017): Redox regulation of free amino acid levels in Arabidopsis thaliana. Physiologia Plantarum, 159: 264-276. Go to original source... Go to PubMed...
  18. Kirma M., Araújo W.L., Fernie A.R., Galili G. (2012): The multifaceted role of aspartate-family amino acids in plant metabolism. Journal of Experimental Botany, 63: 4995-5001. Go to original source... Go to PubMed...
  19. Kovács Z., Simon-Sarkadi L., Sovány C., Kirsch K., Galiba G., Kocsy G. (2011): Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Science, 180: 61-68. Go to original source... Go to PubMed...
  20. Kumar A., Dwivedi S., Singh R.P., Chakrabarty D., Mallick S., Trivedi P.K., Adhikari B., Tripathi R.D. (2014): Evaluation of amino acid profile in contrasting arsenic accumulating rice genotypes under arsenic stress. Biologia Plantarum, 58: 733-742. Go to original source...
  21. Lea P.J., Sodek L., Parry M.A.J., Shewry P.R., Halford N.G. (2007): Asparagine in plants. Annals of Applied Biology, 150: 1-26. Go to original source...
  22. Less H., Angelovici R., Tzin V., Galili G. (2010): Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants. Amino Acids, 39: 1023-1028. Go to original source... Go to PubMed...
  23. Liu X.L., Yang C.Y., Zhang L.B., Li L.Z., Liu S.J., Yu J.B., You L.P., Zhou D., Xia C.H., Zhao J.M., Wu H.F. (2011): Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology, 20: 1422-1431. Go to original source... Go to PubMed...
  24. Luongo T., Ma L.Q. (2005): Characteristics of arsenic accumulation by Pteris and non-Pteris ferns. Plant and Soil, 277: 117-126. Go to original source...
  25. Miflin B.J., Lea P.J. (1976): The pathway of nitrogen assimilation in plants. Phytochemistry, 15: 873-885. Go to original source...
  26. Morot-Gaudry J.F., Job D., Lea P.J. (2001): Amino acid metabolism. In: Lea P.J., Morot-Gaudry J.F. (eds.): Plant Nitrogen. Berlin, Springer Verlag, 167-211. ISBN 978-3-662-04064-5 Go to original source...
  27. Ni W.T., Fahrendorf T., Ballance G.M., Lamb C.J., Dixon R.A. (1996): Stress responses in alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenylpropanoid pathway genes in elicitor-induced cell suspension cultures. Plant Molecular Biology, 30: 427-438. Go to original source... Go to PubMed...
  28. Nikiforova V.J., Bielecka M., Gakière B., Krueger S., Rinder J., Kempa S., Morcuende R., Scheible W.-R., Hesse H., Hoefgen R. (2006): Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids, 30: 173-183. Go to original source... Go to PubMed...
  29. Okumoto S., Funck D., Trovato M., Forlani G. (2016): Editorial: amino acids of the glutamate family: functions beyond primary metabolism. Frontiers in Plant Science, 7: 318. Go to original source... Go to PubMed...
  30. Okunev R.V. (2019): Free amino acid accumulation in soil and tomato plants (Solanum lycopersicum L.) associated with arsenic stress. Water, Air, and Soil Pollution, 230: 253. Go to original source...
  31. Pathare V., Srivastava S., Suprasanna P. (2013): Evaluation of effects of arsenic on carbon, nitrogen, and sulfur metabolism in two contrasting varieties of Brassica juncea. Acta Physiologiae Plantarum, 35: 3377-3389. Go to original source...
  32. Pavlík M., Pavlíková D., Staszková L., Neuberg M., Kaliszová R., Száková J., Tlustoš P. (2010): The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicology and Environmental Safety, 73: 1309-1313. Go to original source... Go to PubMed...
  33. Pavlík M., Pavlíková D., Zemanová V., Hnilička F., Urbanová V., Száková J. (2012): Trace elements present in airborne particulate matter-stressors of plant metabolism. Ecotoxicology and Environmental Safety, 79: 101-107. Go to original source... Go to PubMed...
  34. Pavlíková D., Zemanová V., Pavlík M. (2017): The contents of free amino acids and elements in As-hyperaccumulator Pteris cretica and non-hyperaccumulator Pteris straminea during reversible senescence. Plant, Soil and Environment, 63: 455-460. Go to original source...
  35. Pavlíková D., Zemanová V., Pavlík M., Dobrev P.I., Hnilička F., Motyka V. (2020): Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. PLoS One, 15: e0233055. Go to original source... Go to PubMed...
  36. Planchet E., Limami A.M. (2015): Amino acid synthesis under abiotic stress. In: D'Mello J.P.F. (ed.): Amino Acids in Higher Plants. Wallingford, CAB International, 262-276. ISBN-13: 9781780642635 Go to original source...
  37. Pratelli R., Pilot G. (2014): Regulation of amino acid metabolic enzymes and transporters in plants. Journal of Experimental Botany, 65: 5535-5556. Go to original source... Go to PubMed...
  38. Raab A., Feldmann J., Meharg A.A. (2004): The nature of arsenicphytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiology, 134: 1113-1122. Go to original source... Go to PubMed...
  39. Rodríguez-Ruiz M., Aparicio-Chacón M.V., Palma J.M., Corpas F.J. (2019): Arsenate disrupts ion balance, sulfur and nitric oxide metabolisms in roots and leaves of pea (Pisum sativum L.) plants. Environmental and Experimental Botany, 161: 143-156. Go to original source...
  40. Ros R., Muñoz-Bertomeu J., Krueger S. (2014): Serine in plants: biosynthesis, metabolism, and functions. Trends in Plant Science, 19: 564-569. Go to original source... Go to PubMed...
  41. Sharma S.S., Dietz K.-J. (2006): The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57: 711-726. Go to original source... Go to PubMed...
  42. Tripathi P., Tripathi R.D., Singh R.P., Dwivedi S., Chakrabarty D., Trivedi P.K., Adhikari B. (2013): Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environmental Science and Pollution Research, 20: 884-896. Go to original source... Go to PubMed...
  43. Tzin V., Galili G. (2010): New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant, 3: 956-972. Go to original source... Go to PubMed...
  44. Wang W.Y., Xu M.Y., Wang G.P., Galili G. (2018): New insights into the metabolism of aspartate-family amino acids in plant seeds. Plant Reproduction, 31: 203-211. Go to original source... Go to PubMed...
  45. Zemanová V., Pavlík M., Pavlíková D., Hnilička F., Vondráčková S. (2016): Responses to Cd stress in two Noccaea species (Noccaea praecox and Noccaea caerulescens) originating from two contaminated sites in Mežica, Slovenia and Redlschlag, Austria. Archives of Environmental Contamination and Toxicology, 70: 464-474. Go to original source... Go to PubMed...
  46. Zemanová V., Popov M., Pavlíková D., Kotrba P., Hnilička F., Česká J., Pavlík M. (2020): Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC Plant Biology, 20: 130. Go to original source... Go to PubMed...
  47. Zhao F.J., Wang J.R., Barker J.H.A., Schat H., Bleeker P.M., McGrath S.P. (2003): The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytologist, 159: 403-410. Go to original source... Go to PubMed...
  48. Zhu G.X., Xiao H.Y., Guo Q.J., Zhang Z.Y., Zhao J.J., Yang D. (2018): Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicology and Environmental Safety, 158: 300-308. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.