Skip to main content
Log in

Intralaboratory comparison of analytical methods for quantification of major phytocannabinoids

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study compares alternative approaches for analyzing phytocannabinoids in different plant materials. Three chromatographic analytical methods (ultra-high-performance liquid chromatography with tandem mass spectrometric detection and gas chromatography with mass spectrometric and flame ionization detection) were evaluated regarding selectivity, sensitivity, analytical accuracy, and precision. The performance of the methods was compared and all three methods were demonstrated to be appropriate tools for analyzing phytocannabinoids in cannabis. Gas chromatography coupled with mass spectrometric detection showed slightly better accuracy in determining phytocannabinoid acids, which are often difficult to quantify owing to their limited stability. Aspects of sample preparation, such as material homogenization and extraction, were also considered. A single ultrasonic-assisted ethanolic extraction of dried and powdered plant samples of cannabis was shown to be exhaustive for extracting the samples prior to analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reekie TA, Scott MP, Kassiou M. The evolving science of phytocannabinoids. Nat Rev Chem. 2017;2:0101. https://doi.org/10.1038/s41570-017-0101.

    Article  CAS  Google Scholar 

  2. Hazekamp A, Fischedick JT, Llano Díez M, Lubbe A, Ruhaak RL. Chemistry of cannabis. In: Mander L, Lui HW, editors. Comprehensive natural products II Chemistry and biology. Oxford: Elsevier; 2010. p. 1033–84.

    Google Scholar 

  3. Hanuš LO, Meyer SM, Munoz E, Tagliatela-Scafati O, Appendino G. Phytocannabinoids: a unified critical inventory. Nat Prod Rep. 2016;33(16):1357–92. https://doi.org/10.1039/c6np00074f.

    Article  CAS  PubMed  Google Scholar 

  4. Adams R, Baker BR, Wearn RB. Structure of cannabinol. III. Synthesis of cannabinol, 1-hydroxy-3-n-amyl-6,6,9-trimethyl-6-dibenzopyran1. J Am Chem Soc. 1940;62(8):2204–7. https://doi.org/10.1021/ja01865a083.

    Article  CAS  Google Scholar 

  5. Mechoulam R, Schvo Y. Hashish-I: the structure of cannabidiol. Tetrahedron. 1963;19(12):2073–8. https://doi.org/10.1016/0040-4020(63)85022-X.

    Article  CAS  PubMed  Google Scholar 

  6. Jacob A, Todd AR. Cannabidiol and cannabol, constituents of Cannabis indica resin. Nature. 1940;145:350. https://doi.org/10.1038/145350a0.

    Article  CAS  Google Scholar 

  7. Šantavý F. Acta Univ Palacki Olomuc Fac Med. 1964;35:5–9.

    Google Scholar 

  8. Mechoulam R, Parker LA, Gallily R. Cannabidiol: an overview of some pharmacological aspects. J Clin Pharmacol. 2002;42(11):11S–9S. https://doi.org/10.1177/0091270002238789.

    Article  CAS  PubMed  Google Scholar 

  9. Citti C, Braghiroli D, Vandelli MA, Cannazza G. Pharmaceutical and biomedical analysis of cannabinoids: a critical review. J Pharm Biomed Anal. 2018;147:565–79. https://doi.org/10.1016/j.jpba.2017.06.003.

    Article  CAS  PubMed  Google Scholar 

  10. De Backer B, Debrus B, Lebrun P, Theunis L, Dubois N, Decock L, et al. Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(32):4115–24. https://doi.org/10.1016/j.jchromb.2009.11.004.

    Article  CAS  Google Scholar 

  11. Giese MW, Lewis MA, Giese L, Smith KM. Development and validation of a reliable and robust method for the analysis of cannabinoids and terpenes in cannabis. J AOAC Int. 2015;98(6):1503–22. https://doi.org/10.5740/jaoacint.15-116.

    Article  CAS  PubMed  Google Scholar 

  12. Monograph cannabis flos version 7.1. Office of Medicinal Cannabis (OMC): The Hague: The Netherlands. 2014. https://www.cannabisbureau.nl/arts-en-apotheker/documenten/richtlijnen/2017/12/01/monograph-cannabis-flos. Accessed 21 Nov 2018.

  13. Aizpurua-Olaizola O, Omar J, Navarro P, Olivares M, Etxebarria N, Usobiaga A. Identification and quantification of cannabinoids in Cannabis sativa L. plants by high performance liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2014;406(29):7549–60. https://doi.org/10.1007/s00216-014-8177-x.

    Article  CAS  PubMed  Google Scholar 

  14. Hazekamp A, Fischedick JT. Cannabis - from cultivar to chemovar. Drug Test Anal. 2012;4(7–8):660–6667. https://doi.org/10.1002/dta.407.

    Article  CAS  PubMed  Google Scholar 

  15. Hazekamp A, Tejkalová K, Papadimitriou S. Cannabis: from cultivar to chemovar II-A metabolomics approach to cannabis classification. Cannabis Cannabinoid Res. 2016;1(1):202–15. https://doi.org/10.1089/can.2016.0017.

    Article  CAS  Google Scholar 

  16. Karschner EL, Barnes AJ, Lowe RH, Scheidweiler KB, Huestis MA. Validation of a two-dimensional gas chromatography mass spectrometry method for the simultaneous quantification of cannabidiol, Δ(9)-tetrahydrocannabinol (THC), 11-hydroxy-THC, and 11-nor-9-carboxy-THC in plasma. Anal Bioanal Chem. 2010;397:603–11. https://doi.org/10.1007/s00216-010-3599-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andrenyak DM, Moody DE, Slawson MH, O'Leary DS, Haney M. Determination of ∆-9-tetrahydrocannabinol (THC), 11-hydroxy-THC, 11-nor-9-carboxy-THC and cannabidiol in human plasma using gas chromatography-tandem mass spectrometry. J Anal Toxicol. 2017;41(4):277–88. https://doi.org/10.1093/jat/bkw136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. European Monitoring Centre for Drugs and Drug Addiction, Cannabis legislation in Europe: an overview. Publications Office of the European Union, Luxembourg. 2017. https://doi.org/10.2810/4682.

  19. Raharjo TJ, Verpoorte R. Methods for the analysis of cannabinoids in biological materials: a review. Phytochem Anal. 2004;15(2):79–94. https://doi.org/10.1002/pca.753.

    Article  CAS  PubMed  Google Scholar 

  20. Sexton M, Ziskind J. Sampling cannabis for analytical purposes BOTEC Analysis Corp. 2013. I-502 Project #430-1e. pp. 1–26. https://lcb.wa.gov/publications/Marijuana/BOTEC reports/1e-Sampling-Lots-Final.pdf. Accessed 21 Nov 2018.

  21. Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry. 2010;71(17–18):2058–73. https://doi.org/10.1016/j.phytochem.2010.10.001.

    Article  CAS  PubMed  Google Scholar 

  22. Brighenti V, Pellati F, Steinbach M, Maran D, Benvenuti S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J Pharm Biomed Anal. 2017;143:228–36. https://doi.org/10.1016/j.jpba.2017.05.049.

    Article  CAS  PubMed  Google Scholar 

  23. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed. Allured Publishing Corporation; 2007.

  24. Pellegrini M, Marchei E, Pacifici R, Pichini S. A rapid and simple procedure for the determination of cannabinoids in hemp food products by gas chromatography-mass spectrometry. J Pharm Biomed Anal. 2005;36(5):939–46. https://doi.org/10.1016/j.jpba.2004.07.035.

    Article  CAS  PubMed  Google Scholar 

  25. Zamengo L, Frison G, Bettin C, Sciarrone R. Variability of cannabis potency in the Venice area (Italy): a survey over the period 2010-2012. Drug Test Anal. 2014;6(1–2):46–51. https://doi.org/10.1002/dta.1515.

    Article  CAS  PubMed  Google Scholar 

  26. Lu W, Bennett BD, Rabinowitz JD. Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Anal Technol Biomed Life Sci. 2008;871(2):236–42. https://doi.org/10.1016/j.jchromb.2008.04.031.

    Article  CAS  Google Scholar 

  27. Veress T, Szanto JI, Leisztner L. Determination of cannabinoid acids by high-performance liquid chromatography of their neutral derivatives formed by thermal decarboxylation. 1. Study of the decarboxylation process in open reactors. J Chromatogr. 1990;520:339–47. https://doi.org/10.1016/0021-9673(90)85118-F.

    Article  CAS  Google Scholar 

  28. Perrotin-Brunel H, Buijs W, van Spronsen J, van Roosmalen MJE, Peters CJ, Verpoorte R, et al. Decarboxylation of Δ(9)-tetrahydrocannabinol: kinetics and molecular modeling. J Mol Struct. 2011;987:67–73. https://doi.org/10.1016/j.molstruc.2010.11.06.

    Article  CAS  Google Scholar 

  29. Citti C, Pacchetti B, Vandelli MA, Forni F, Cannazza G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J Pharm Biomed Anal. 2018;149:532–40. https://doi.org/10.1016/j.jpba.2017.11.044.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Sees-editing Ltd. (UK) for editing the manuscript.

Funding

This work was supported by project No. RO0419 (sustainable systems and technologies, improving crop production for higher quality of production of food, feed, and raw materials, under conditions of changing climate) funded by the Ministry of Agriculture, Czech Republic. P.T. was supported also from ERDF project “Plants as a tool for sustainable global development” (No. CZ.02.1.01/0.0/0.0/16_019/0000827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Béres.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animals subjects.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Béres, T., Černochová, L., Ćavar Zeljković, S. et al. Intralaboratory comparison of analytical methods for quantification of major phytocannabinoids. Anal Bioanal Chem 411, 3069–3079 (2019). https://doi.org/10.1007/s00216-019-01760-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01760-y

Keywords

Navigation