Skip to main content
Log in

Multiple origins of Indian dwarf wheat by mutations targeting the TREE domain of a GSK3-like kinase for drought tolerance, phosphate uptake, and grain quality

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Multiple origins of Indian dwarf wheat were due to two mutations targeting the same TREE domain of a GSK3-like kinase, and these mutations confer to enhanced drought tolerance and increased phosphate and nitrogen accumulation for adaptation to the dry climate of Indian and Pakistan.

Abstract

Indian dwarf wheat, featured by the short stature, erect leaves, dense spikes, and small, spherical grains, was a staple crop in India and Pakistan from the Bronze Age until the early 1900s. These morphological features are controlled by a single locus Sphaerococcum 1 (S1), but the genetic identity of the locus and molecular mechanisms underlying the selection of this wheat type are unknown. In this study, we showed that the origin of Indian dwarf wheat was due to two independent missense mutations targeting the conserved TREE domain of a GSK3-like kinase, which is homologous to the Arabidopsis BIN2 protein, a negative regulator in brassinosteroid signaling. The S1 protein is involved in brassinosteroid signaling by physical interaction with the wheat BES1/BZR1 proteins. The dwarf alleles are insensitive to brassinosteroid, upregulates brassinosteroid biosynthetic genes, significantly enhanced drought tolerance, facilitated phosphate accumulation, and increased high molecular weight glutenins. It is the enhanced drought tolerance and accumulation of nitrogen and phosphate that contributed to the adaptation of such a small-grain form of wheat to the dry climate of India and Pakistan. Thus, our research not only identified the genetic events underlying the origin of the Indian dwarf wheat, but also revealed the function of brassinosteroid in the regulation of drought tolerance, phosphate homeostasis, and grain quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajmera I, Hodgman TC, Chungui L (2019) An integrative systems perspective on plant phosphate research. Genes (Basel) 20:E139

    Google Scholar 

  • Albani D, Hammond-Kosack MC, Smith C, Conlan S, Colot V, Holdsworth M, Bevan MW (1997) The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9:171–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belkhadir Y, Jaillais Y (2015) The molecular circuitry of brassinosteroid signaling. New Phytol 206:522–540

    CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borrell AK, van Oosterom EJ, Mullet JE, George-Jaeggli B, Jordan DR, Klein PE, Hammer GL (2014) Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytol 203:817–830

    PubMed  Google Scholar 

  • Bu SL, Liu C, Liu N, Zhao JL, Ai LF, Chi H, Li KL, Chien CW, Burlingame AL, Zhang SW, Wang ZY (2017) Immunopurification and mass spectrometry identifies Protein Phosphatase 2A (PP2A) and BIN2/GSK3 as regulators of AKS transcription factors in Arabidopsis. Mol Plant 10(2):345–348

    CAS  PubMed  Google Scholar 

  • Cai Z, Liu J, Wang H, Yang C, Chen Y, Li Y, Pan S, Dong R, Tang G, Barajas-Lopez JdD, Fujii H, Wang X (2014) GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc Natl Acad Sci U S A 111:9651–9656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Xin M, Xu R, Chen Z, Cai W, Chai L, Xu H, Jia L, Feng Z, Wang Z, Peng H, Yao Y, Hu Z, Guo W, Ni Z, Sun Q (2020) A single amino acid substitution in STKc_GSK3 kinase conferring semispherical grains and its implications for the origin of Triticum sphaerococcum. Plant Cell 32:923–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase. Plant Physiol 130:1506–1515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    CAS  PubMed  Google Scholar 

  • Feldman M (2001) Origin of cultivated wheat. In: Bojean AP, William JA (eds) The World wheat book–-a history of wheat breeding. Lavoisier Publishing, Paris, France, pp 3–56

    Google Scholar 

  • Fujihara S, Sasaki H, Aoyagi Y, Sugahara T (2008) Nitrogen-to-protein conversion factors for some cereal products in Japan. J Food Sci 73:C204-209

    CAS  PubMed  Google Scholar 

  • Gao L, Ma W, Chen J, Wang K, Li J, Wang S, Bekes F, Appels R, Yan Y (2010) Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. J Agric Food Chem 58:2777–2786

    CAS  PubMed  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu YQ, Salse J, Coleman-Derr D, Dupin A, Crossman C, Lazo GR, Huo N, Belcram H, Ravel C, Charmet G, Charles M, Anderson OD, Chalhoub B (2006) Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 174:1493–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  • He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A 99:10185–10190

    CAS  PubMed  PubMed Central  Google Scholar 

  • He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Yu D (2014) BRASSINOSTEROID INSENSITIVE2 interacts with abscisic acid insensitive5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 26:4394–4408

    CAS  PubMed  PubMed Central  Google Scholar 

  • International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Google Scholar 

  • Jeong DH, Lee S, Kim SL, Hwang I, An G (2007) Regulation of brassinosteroid responses by phytochrome B in rice. Plant Cell Environ 30:590–599

    CAS  PubMed  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyzer, one of the ancestors of Triticum vulgare. Agric Hortic 9:889–890

    Google Scholar 

  • Kovar JL (2003) Methods of determination of P, K, Ca, Mg and trace elements. In: Peters J (ed) Recommended methods of manure analysis. University of Wisconsin-Extension, Madison, pp 39–47

    Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295:1299–1301

    CAS  PubMed  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    CAS  PubMed  Google Scholar 

  • Li W, Huang L, Gill BS (2008) Recurrent deletions of puroindoline genes at the grain hardness locus in four independent lineages of polyploid wheat. Plant Physiol 146:200–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhang Q, Wang S, Langham MA, Singh D, Bowden RL, Xu SS (2019) Development and characterization of wheat-sea wheatgrass (Thinopyrum junceiforme) amphiploids for biotic stress resistance and abiotic stress tolerance. Theor Appl Genet 132:163–175

    CAS  PubMed  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    CAS  PubMed  Google Scholar 

  • Liu TY, Huang TK, Tseng CY, Lai YS, Lin SI, Lin WY, Chen JW, Chiou TJ (2012) PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24:2168–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XY, Lister DL, Zhao Z, Staff RA, Jones P, Zhou L, Pokharia AK, Petrie CA, Pathak A, Lu H, Matuzeviciute MG, Bates J, Lu H, Pilgram TK, Jones MK (2016) The virtues of small grain size: potential pathways to a distinguishing feature of Asian wheats. Quat Int 426:107–119

    Google Scholar 

  • Long YM, Chao WS, Ma GJ, Xu SS, Qi LL (2017) An innovative SNP genotyping method adapting to multiple platforms and throughputs. Theor Appl Genet 130(3):597–607

    CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37(81–89):107–116

    Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J (2016) Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J 88:452–467

    PubMed  Google Scholar 

  • Mori N, Ohta S, Chiba H, Takagi T, Niimi Y, Shinde V, Kajale MD, Osada T (2013) Rediscovery of Indian dwarf wheat (Triticum aestivum L. ssp. sphaerococcum (Perc.) MK.) an ancient crop of the Indian subcontinent. Genet Resour Crop Evol 60:1771–1775

    CAS  Google Scholar 

  • Padmore JM (1990) Protein (crude) in animal feed—dumas method, method No. 968.06. In: Herlrich K (ed) Official methods of analysis of the association of official analytical chemists. AOAC Inc, Arlington, pp 71–72

    Google Scholar 

  • Percival J (1921) The wheat plant, a monograph. Duckworth and Co, London

    Google Scholar 

  • Pérez-Pérez JM, Ponce MR, Micol JL (2002) The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev Biol 24:161–173

    Google Scholar 

  • Peterson CJ, Shelton DR, Martin TJ, Sears RG, Williams E, Graybosch RA (2001) Grain color stability and classification of hard white wheat in the U.S. Euphytica 119:101–107

    Google Scholar 

  • Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI (2019) Brassinosteroid signaling in plant development and adaptation to stress. Development 146:151894

    Google Scholar 

  • Puga MI, Mateos I, Charukesi R, Wang Z, Franco-Zorrilla JM, de Lorenzo L, Irigoyen ML, Masiero S, Bustos R, Rodríguez J, Leyva A, Rubio V, Sommer H, Paz-Ares J (2014) SPX1 is a phosphate-dependent inhibitor of phosphate starvation response 1 in Arabidopsis. Proc Natl Acad Sci U S A 111:14947–14952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MVP (1977) Mapping of the sphaerococcum gene “s” on chromosome 3D of wheat. Cereal Res Commun 5:15–17

    Google Scholar 

  • Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125

    CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    CAS  PubMed  Google Scholar 

  • Ryu H, Cho H, Bae W, Hwang I (2014) Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nat Commun 5:4138

    CAS  PubMed  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    CAS  PubMed  Google Scholar 

  • Salina E, Borner A, Leonoval I, Korzun V, Laikova L, Maystrenko O, Roder MS (2000) Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet 100:686–689

    CAS  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak PC, A. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    CAS  PubMed  Google Scholar 

  • Schmidt JW, Weibel DE, Johnson VA (1963) Inheritance of an incompletely dominant character in common wheat simulating Triticum sphaerococcum. Crop Sci 3:261–264

    Google Scholar 

  • Sears ER (1947) The sphaerococcum gene in wheat. Genetics 32:102–103

    Google Scholar 

  • Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of gluten: an elastic protein from wheat grain. Philos Trans R Soc Lond B Biol Sci 357:133–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AP, Fridman Y, Friedlander-Shani L, Tarkowska D, Strnad M, Savaldi-Goldstein S (2014) Activity of the brassinosteroid transcription factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 blocks developmental reprogramming in response to low phosphate availability. Plant Physiol 166:578–688

    Google Scholar 

  • Singh AP, Fridman Y, Holland N, Ackerman-Lavert M, Zananiri R, Jaillais Y, Henn A, Savaldi-Goldstein S (2018) Interdependent nutrient availability and steroid hormone signals facilitate root growth plasticity. Dev Cell 46:59–72

    CAS  PubMed  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, Patil S, Kim TW, Ji H, Wong WH, Rhee SY, Wang ZY (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Liu X, Wei Q, Liu J, Yang T, Jia L, Wang Y, Yang G, He G (2017) Functional characterization of TaFUSCA3, a B3-superfamily transcription factor gene in the wheat. Front Plant Sci 8:1133

    PubMed  PubMed Central  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    CAS  PubMed  Google Scholar 

  • Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Tong H, Chu C (2018) Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci 23:1016–1028

    CAS  PubMed  Google Scholar 

  • Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C (2012) DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24:2561–2577

    Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers, Wageningen

  • Vrána J, Kubaláková M, Šimková H, Cíhalíková J, Lysák MA, Doležel J (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041

    PubMed  PubMed Central  Google Scholar 

  • Wada K, Marumo S, Ikekawa N, Morisaki M, Mori K (1981) Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant Cell Physiol 22:323–325

    CAS  Google Scholar 

  • Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505–513

    CAS  PubMed  Google Scholar 

  • Wang G, Wang G, Zhang X, Wang F, Song R (2012) Isolation of high quality RNA from cereal seeds containing high levels of starch. Phytochem Anal 23:159–163

    PubMed  Google Scholar 

  • Wang J, Luo MC, Chen Z, You FM, Wei Y, Zheng Y, Dvorak J (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937

    CAS  PubMed  Google Scholar 

  • Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, Li C, Wu Z, Liu Y, Yu Y, Shou H, Mo X, Mao C, Wu P (2014) Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci U S A 111:14953–14958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Tang J, Liu J, Hu J, Liu J, Chen Y, Cai Z, Wang X (2017) Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol Plant 11:315–325

    PubMed  Google Scholar 

  • Wolf A, Watson M, Wolf N (2003) Digestion and dissolution methods for P, K, Ca, Mg and trace elements. In: Peters J (ed) Recommended methods of manure analysis. University of Wisconsin-Extension, Madison, pp 35–36

    Google Scholar 

  • Yang X, Bai Y, Shang J, Xin R, Tang W (2016) The antagonistic regulation of abscisic acid inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT. Plant Cell Environ 39:1994–2003

    CAS  PubMed  Google Scholar 

  • Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    CAS  PubMed  Google Scholar 

  • Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ 38:35–49

    CAS  PubMed  Google Scholar 

  • Youn JH, Kim TW (2015) Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant 8:552–565

    CAS  PubMed  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    CAS  PubMed  Google Scholar 

  • Zhang Z, Wang W, Li W (2013) Genetic interactions underlying the biosynthesis and inhibition of beta-diketones in wheat and their impact on glaucousness and cuticle permeability. PLoS ONE 8:e54129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Bai MY, Chong K (2014) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33:683–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Hua L, Gupta A, Tricoli D, Edwards KJ, Yang B, Li W (2019) Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol J 17:1623–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JY, Li Y, Cao DM, Yang H, Oh E, Bi Y, Zhu S, Wang ZY (2017) The F-box protein KIB1 Mediates Brassinosteroid-Induced inactivation and degradation of GSK3-like kinases in Arabidopsis. Mol Cell 66:648–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Harold Bockelman (USDA ARS, Aberdeen, ID), Dr. Bikram Gill (Kansas State University, Manhattan, KS), Dr. Helmut Knüpffer (The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), German), Dr. Shuhei Nasuda (Kyoto University, Japan), and Dr. N. Wanatabe (Gifu University, Japan) for providing seeds. We are grateful to Jan Vrána, Zdeňka Dubská, Romana Šperková, and Jitka Weiserová for the technical assistance with chromosome sorting and DNA amplification. This research is supported by the USDA Hatch program through the South Dakota Agricultural Experiment Station and USDA NIFA-IWYP (award number: 2017-67008-25934). IM was supported by the Marie Curie Fellowship grant award “AEGILWHEAT” (H2020-MSCA-IF-2016-746253) and the Hungarian National Research, Development, and Innovation Office (K116277). JD was supported by the ERDF project “Plants as a tool for sustainable global development” (No. CZ.02.1.01/0.0/0.0/16_019/0000827).

Author information

Authors and Affiliations

Authors

Contributions

WL conceived the project, all authors conducted experiments and analyzed results, WL drafted the manuscript, and all authors edited and approved it.

Corresponding author

Correspondence to Wanlong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Maria von Korff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Hua, L., Lin, G. et al. Multiple origins of Indian dwarf wheat by mutations targeting the TREE domain of a GSK3-like kinase for drought tolerance, phosphate uptake, and grain quality. Theor Appl Genet 134, 633–645 (2021). https://doi.org/10.1007/s00122-020-03719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03719-5

Navigation