Identification of Bone Density Changes Applying Impedance Spectroscopy with a Piezo-Device Coupled to a Human Tooth

Article Preview

Abstract:

Bone tissue is a calcium deposit and supporting structure of the human body, it is exposed to several pathologies that modify its mineral content. To determine these changes, different diagnostic procedures are performed with techniques using invasive ionizing radiation, which are limited by the negative effects in the long term on human health. A methodology is explored that could be applicable in the diagnosis of pathologic variations in bone mineral density, using structural monitoring tools. The proposed technique estimates changes in bone conditions by applying impedance spectroscopy with a tooth-borne piezo-device. Bone-tooth samples were prepared to simulate a section of maxillary bone and subsequently treated with chemical agents, simulating pathologic decalcification. The piezo-device is inserted in the slot of an orthodontic bracket, previously bonded to the crown of the tooth, in order to transmit vibration to surrounding bone. The variations in bone micro-architecture were computed by image processing analyzed with samples prepared in transparent resin, allowing the measurement of morphometry before and after the induced changes in mineral content. Using vibrational bone response, impedance measurements allowed to observe the variations in bone mass as the samples were progressively decalcified. In the 5-50kHz spectrum, it was demonstrated the sensitivity of the electro-mechanical impedance during the bone alteration procedure since the electrical resistance signals of the piezo-device consistently changed in the frequency spectrum (5-50kHz). The piezo-device shows to be sensitive to the changes produced by the bone alterations, which were caused by the stiffness variations made in the sample during the decalcifying. These changes were statistically correlated to demonstrate that in a less invasive way, bone alterations could be monitored from the teeth. This result opens the door to search for a new way to diagnose bone density changes in real applications.

You might also be interested in these eBooks

Info:

Pages:

1-10

Citation:

Online since:

August 2021

Export:

Price:

* - Corresponding Author

[1] Coyle, S., Lenehan, B., & Hoey, D. A. (2016). Electromechanics of Bone: Mechanobiological Considerations. In Electrically Active Materials for Medical Devices (pp.511-528).

DOI: 10.1142/9781783269877_0033

Google Scholar

[2] Kavitha, M. S., Asano, A., Taguchi, A., Kurita, T., & Sanada, M. (2012). Diagnosis of osteoporosis from dental panoramic radiographs using the support vector machine method in a computer-aided system. BMC medical imaging, 12(1), 1.

DOI: 10.1186/1471-2342-12-1

Google Scholar

[3] Fogelman, I., & Blake, G. M. (2000). Different approaches to bone densitometry. Journal of Nuclear Medicine, 41(12), 2015-2025.

Google Scholar

[4] Laugerette, A., Baum, T., Gersing, A. S., Schwaiger, B. J., Brown, K., Frerking, L. C., ... & Noël, P. B. (2020). Spectral-detector based x-ray absorptiometry (SDXA): in-vivo bone mineral density measurements in patients with and without osteoporotic fractures. Biomedical Physics & Engineering Express, 6(5), 055021.

DOI: 10.1088/2057-1976/abab6b

Google Scholar

[5] Nowak, T., Eberhard, M., Schmidt, B., Frey, D., Distler, O., Saltybaeva, N., ... & Euler, A. (2021). Bone mineral density quantification from localizer radiographs: accuracy and precision of energy-integrating detector CT and photon-counting detector CT. Radiology, 298(1), 147-152.

DOI: 10.1148/radiol.2020202767

Google Scholar

[6] Pisani, P., Renna, M.D., Conversano, F., Casciaro, E., Muratore, M., Quarta, E., ... & Casciaro, S. (2013). Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques. World journal of radiology, 5(11), 398.

DOI: 10.1530/boneabs.1.pp323

Google Scholar

[7] Hans, D., & Baim, S. (2017). Quantitative ultrasound (QUS) in the management of osteoporosis and assessment of fracture risk. Journal of Clinical Densitometry, 20(3), 322-333.

DOI: 10.1016/j.jocd.2017.06.018

Google Scholar

[8] Srivastava, S., & Bhalla, S. (2019). Numerical evaluation of nonbonded piezo sensor for biomedical diagnostics using electromechanical impedance technique. International journal for numerical methods in biomedical engineering, 35(2), e3160.

DOI: 10.1002/cnm.3160

Google Scholar

[9] Na, W. S., & Baek, J. (2018). A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. Sensors, 18(5), 1307.

DOI: 10.3390/s18051307

Google Scholar

[10] Tinoco, H. A., Cardona, C. I., Peña, F. M., Gomez, J. P., Roldan-Restrepo, S. I., Velasco-Mejia, M. A., & Barco, D. R. (2019). Evaluation of a piezo-actuated sensor for monitoring elastic variations of its support with impedance-based measurements. Sensors, 19(1), 184.

DOI: 10.3390/s19010184

Google Scholar

[11] Barco, D.R., Tinoco, H.A., Cardona, C.I., & Peña, F.M. (2019, October). Piezo-actuated device for a bio-structural monitoring application through vibration-based condition and electromechanical impedance measurements. In IOP Conference Series: Materials Science and Engineering. Vol. 657, No. 1, p.012031.

DOI: 10.1088/1757-899x/657/1/012031

Google Scholar

[12] Gulizzi, V., Rizzo, P., Milazzo, A., & Ribolla, E. L. M. (2015). An integrated structural health monitoring system based on electromechanical impedance and guided ultrasonic waves. Journal of Civil Structural Health Monitoring, 5(3), 337-352.

DOI: 10.1007/s13349-015-0112-0

Google Scholar

[13] Tinoco, H. A., Robledo-Callejas, L., Marulanda, D. J., & Serpa, A. L. (2016). Damage detection in plates using the electromechanical impedance technique based on decoupled measurements of piezoelectric transducers. Journal of Sound and Vibration, 384, 146-162.

DOI: 10.1016/j.jsv.2016.08.011

Google Scholar

[14] Ribolla, E. L., & Rizzo, P. (2015a). Modeling the electromechanical impedance technique for the assessment of dental implant stability. Journal of biomechanics, 48(10), 1713-1720.

DOI: 10.1016/j.jbiomech.2015.05.020

Google Scholar

[15] Tabrizi, A., Rizzo, P., & Ochs, M. W. (2012). Electromechanical impedance method to assess dental implant stability. Smart Materials and Structures, 21(11), 115022.

DOI: 10.1088/0964-1726/21/11/115022

Google Scholar

[16] Tinoco, H. A., Cardona, C. I., Marín-Berrio, M. L., García-Grisales, J., Gomez, J. P., Roldan, S. I., … & Zikmund, T. (2020). Bio-structural monitoring of bone mineral alterations through electromechanical impedance measurements of a Piezo-device joined to a tooth. Biomedical Engineering Letters, 10(4), 603-617.

DOI: 10.1007/s13534-020-00170-9

Google Scholar

[17] Merdji, A., Della, N., Benaissa, A., Bouiadjra, B. A. B., Serier, B., Mootanah, R., ... & Mukdadi, O. M. (2015). Numerical analysis of dental caries effect on the biomechanical behavior of the periodontal system. Journal of Nanotechnology in Engineering and Medicine, 6(3). Taharou Merdji.

DOI: 10.1115/1.4032689

Google Scholar

[18] Taharou, B., Merdji, A., Hillstrom, R., Benaissa, A., Roy, S., Della, N., ... & Mukdadi, O. (2020). Biomechanical Evaluation of Bone Quality Effect on Stresses at Bone-Implant Interface: A Finite Element Study. Journal of Applied and Computational Mechanics.

DOI: 10.1615/jlongtermeffmedimplants.2020035028

Google Scholar

[19] Tinoco, H. A., & Marulanda, D. J. (2015). Damage identification in active plates with indices based on Gaussian confidence ellipses obtained of the electromechanical admittance. Journal of Nondestructive Evaluation, 34(3), 28.

DOI: 10.1007/s10921-015-0299-3

Google Scholar

[20] Roth, W., Giurgiutiu, V.: Structural health monitoring of an adhesive disbond through electromechanical impedance spectroscopy. International Journal of Adhesion and Adhesives, 73, 109-117 (2017).

DOI: 10.1016/j.ijadhadh.2016.11.008

Google Scholar

[21] Liang, C., Sun, F. P., & Rogers, C. A. (1997). Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer. Journal of intelligent material systems and structures, 8(4), 335-343.

DOI: 10.1177/1045389x9700800406

Google Scholar

[22] Kikugawa, H., & Asaka, T. (2004). Effect of long-term formalin preservation on bending properties and fracture toughness of bovine compact bone. Materials transactions, 45(10), 3060-3064.

DOI: 10.2320/matertrans.45.3060

Google Scholar

[23] Ireta-Moreno, F., Martínez-Celorio, R. A., González-Rolón, B., Morales-Sánchez, E., Castro-Sánchez, R., Hernández-Fusilier, D., & Salvador-Palmer, R. (2010). Estudio de muestras óseas descalcificadas mediante factor de disipación dieléctrica. Revista mexicana de ingeniería biomédica, 31(1), 73-79.

Google Scholar

[24] Meaney, P. M., Zhou, T., Goodwin, D., Golnabi, A., Attardo, E. A., & Paulsen, K. D. (2012). Bone dielectric property variation as a function of mineralization at microwave frequencies. Journal of Biomedical Imaging, 2012, 7.

DOI: 10.1155/2012/649612

Google Scholar

[25] Irastorza, R. M., Blangino, E., Carlevaro, C. M., & Vericat, F. (2014). Modeling of the dielectric properties of trabecular bone samples at microwave frequency. Medical & biological engineering & computing, 52(5), 439-447.

DOI: 10.1007/s11517-014-1145-y

Google Scholar

[26] Aranberri, I., Binks, B. P., Clint, J. H., & Fletcher, P. D. I. (2006). Elaboración y caracterización de emulsiones estabilizadas por polímeros y agentes tensioactivos. Revista Iberoamericana de Polímeros, 7(3), 211-231.

Google Scholar

[27] Watanabe, P. C. A., Monteiro, S. A. C., Campbell, J. C. T., & Elejalde, D. A. A. (2006). Análisis del patrón óseo trabecular de mandíbulas maceradas en radiografías panorámicas digitales. International Journal of Morphology, 24(3), 369-376.

DOI: 10.4067/s0717-95022006000400013

Google Scholar

[28] Jett, S., Shrout, M. K., Mailhot, J. M., Potter, B. J., & Borke, J. L. (2004). An evaluation of the origin of trabecular bone patterns using visual and digital image analysis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 98(5), 598-604.

DOI: 10.1016/s1079-2104(04)00524-4

Google Scholar

[29] Stout, S.D., & Crowder, C. (2012). Bone remodeling, histomorphology, and histomorphometry. Bone histology: An anthropological perspective, 1-21.

DOI: 10.1201/b11393-5

Google Scholar

[30] Collins, T. J. (2007). ImageJ for microscopy. Biotechniques, 43(S1), S25-S30.

DOI: 10.2144/000112517

Google Scholar