Skip to main content

Testing Efficiency of Stone Conservation Treatments

  • Chapter
  • First Online:
Advanced Materials for the Conservation of Stone

Abstract

The first part of this chapter describes laboratory verification tests for determining the efficiency of various consolidation treatments on stone. It compares material data acquired using circular discs and rectangular plates. The application of rectangular plates enables the testing of not only strength but also of other material characteristics (e.g. moisture, water saturation or temperature dilation parameters on identical specimens). Therefore, it may be very useful for the testing of consolidation agents being developed before their introduction into conservation practice. The second part introduces a portable ultrasonic double-hole probe for measuring material properties along a depth profile and assessing penetration depth in the near-surface material layer between two drilled holes. This moderately destructive method is useful mainly for measurements on stone masonry façades or structures in which drilling a hole is acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tabasso Laurenzi M, Simon S. Testing methods and criteria for the selection/evaluation of products for the conservation of porous building materials. Rev Conserv. 2006;7:67–82.

    Google Scholar 

  2. Sasse HR, Snethlage R. Evaluation of stone consolidation treatments science and technology for cultural heritage. J Com Natl Sci Tecnol Beni Cult CNR. 1996;5(1):85–92.

    Google Scholar 

  3. Snethlage R, Pfanner M. Leitfaden Steinkonservierung. Stuttgart: Fraunhofer IRB Verlag; 2013.

    Google Scholar 

  4. Drdácký MF, Slížková Z. Performance of glauconitic sandstone treated with ethylsilicate consolidation agents. In: Łukaszewicz JW, Niemcewicz P, editors. Proceedings of the 11th International congress on deterioration and conservation of stone, vol. 2. Toruń: Nicolaus Copernicus University Press; 2008. p. 1205–12.

    Google Scholar 

  5. Giovan MN, Sines G. Biaxial and uniaxial data for statistical comparisons of a ceramic’s strength. J Am Ceram Soc. 1979;62:510–5.

    Article  Google Scholar 

  6. Fessler H, Fricker DC. A theoretical analysis of the ring-on-ring loading disc test. J Am Ceram Soc. 1984;67:582–8.

    Article  Google Scholar 

  7. Chung SM, Yap AU, Chandra SP, et al. Flexural strength of dental composite restoratives: comparison of biaxial and three-point bending test. J Biomed Mater Res B Appl Biomater. 2004;71B:278–83.

    Article  Google Scholar 

  8. Xu Y, Han J, Lin H, An L. Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics. Regen Biomater. 2015;2(4):239–44.

    Article  Google Scholar 

  9. Kim J, Kim DJ, Zi G. Improvement of the biaxial flexure test method for concrete. Cem Concr Comp. 2013;37:154–0.

    Article  Google Scholar 

  10. Kim J, Yi C, Zi G. Biaxial flexural strength of concrete by two different methods. Mag Concr Res. 2012;64(12):1057–65.

    Article  Google Scholar 

  11. Zi G, Oh H, Park S-K. A novel indirect tensile test method to measure the biaxial tensile strength of concretes and other quasibrittle materials. Cem Concr Res. 2008;38(6):751.

    Article  Google Scholar 

  12. Wittmann FH, Prim P. Mesures de l’effet consolidant d’un produit de traitment. Mater Constr. 1983;16(94):235–42.

    Article  Google Scholar 

  13. Danzer R, Supancic P, Harrer W, Wang Z, Börger A. Biaxial strength testing on mini specimens. In: Gdoutos EE, editor. Fracture of nano and engineering materials and structures. Dordrecht: Springer; 2006. p. 589–90.

    Chapter  Google Scholar 

  14. Drdácký M, Lesák J, Rescic S, Slížková Z, Tiano P, Valach J. Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces. Mater Struct. 2012;45(4):505–20.

    Article  Google Scholar 

  15. Ziegenbalg G, Drdácký M, Dietze C, Schuch D. Nanomaterials in architecture and art conservation. Singapore: Pan Stanford Publishing Pte Ltd.; 2017 (in print).

    Google Scholar 

Download references

Acknowledgement

The chapter is based on the results of research supported by the Czech Grant Agency Project G105/12/059 and the kind help of Ivana Frolíková with figure preparation and Luisa Natalia Pena with flexural testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Drdácký .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drdácký, M. (2018). Testing Efficiency of Stone Conservation Treatments. In: Hosseini, M., Karapanagiotis, I. (eds) Advanced Materials for the Conservation of Stone. Springer, Cham. https://doi.org/10.1007/978-3-319-72260-3_8

Download citation

Publish with us

Policies and ethics