Skip to main content

Identification of Surface Runoff Source Areas as a Tool for Projections of NBS in Water Management

  • Chapter
  • First Online:
Nature-Based Solutions for Flood Mitigation

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 107))

  • 1121 Accesses

Abstract

The location of surface runoff source areas is one of the most important information for the conservation of water resources, their sustainable management as well as mitigation of the frequency of extreme hydrological phenomena. The location of the surface runoff source areas in the landscape affects not only the hydrological and sediment regime of the watercourse itself, but also some physicochemical properties of the water. The exact parameters of the hydrological and sediment regime are the result of a number of variables – mostly soil properties, morphometric parameters of the terrain, and the level of anthropogenic influence, but also the type of surface cover. This research deals with the relationship between types of habitats (in terms of their qualitative properties – e.g. naturalness of the habitat, diversity of structures, sensitivity of the habitat to external interventions, etc.) and their impact on runoff processes in the landscape; i.e., the extent to which the habitat type can affect the soil water retention and infiltration capacity, and thus runoff processes. The creation of habitats with an identified positive effect on the hydrological regime (mitigation the frequency of drought and flash floods), or the creation of conditions suitable for the natural formation of these habitats, can be considered as a good example of nature-based solutions for water management. Within a study area in the Czech Republic, a medium-sized watercourse catchment with forest-agricultural landscape, a newly developed water retention model LOREP was applied. This model takes into account a multiple-flow regime, providing more accurate results than previous models. The analysis revealed that there are several types of natural or close-to-nature habitats able to retain a significant amount of rainwater, even in soils with limited retention capacity. A possible increase in the area of these habitats may indirectly contribute to the mitigation of hydrological extremes and the increase of surface water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brázdil R, Trnka M, Řezníčková V, Balek J, Bartošová L, Bičík I, Cudlín P, Čermák P, Dobrovolný P, Dubrovský M, Farda A, Hanel M, Hladík J, Hlavinka P, Janský B, Ježík P, Klem K, Kocum J, Kolář T, Kotyza O, Krkoška Lorencová E, Macků J, Mikšovský J, Možný M, Muzikář R, Novotný I, Pártl A, Pařil P, Pokorný R, Rybníček M, Semerádová D, Soukalová E, Stachoň Z, Štěpánek P, Štych P, Treml P, Urban O, Vačkář D, Valášek H, Vizina A, Vlnas R, Vopravil J, Zahradníček P, Žalud Z (2015) Sucho v českých zemích: minulost, současnost, budoucnost. Centrum výzkumu globální změny Akademie věd České republiky, v. v. i., Brno. 401 p. (in Czech)

    Google Scholar 

  2. Blauhut V, Stahl K, Stagge JH, Tallaksen LM, De Stefano L, Vogt J (2016) Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrol Earth Syst Sci 20(7):2779

    Article  Google Scholar 

  3. Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A (2018) Will drought events become more frequent and severe in Europe? Int J Climatol 38(4):1718–1736

    Article  Google Scholar 

  4. Pan R, Martinez A, Brito T, Seidel EP (2018) Processes of soil infiltration and water retention and strategies to increase their capacity. J Exp Agr Int 20(2):1–14

    CAS  Google Scholar 

  5. Brown AG, Quine TA (1999) Fluvial processes and environmental change. Wiley, Chichester. 413 p

    Google Scholar 

  6. Kantor P, Krečmer V, Šach F, Švihla V, Černohous V (2003) Lesy a povodně. Praha: Ministerstvo životního prostředí ČR. 48 p. (in Czech)

    Google Scholar 

  7. Walsh CJ, Leonard AW, Ladson AR, Fletcher TD (2004) Urban stormwater and the ecology of streams. Cooperative Research Centre for Freshwater Ecology, Cooperative Research Centre for Catchment Hydrology, Canberra, 44 p

    Google Scholar 

  8. Zeigert SJ, Hubbart JA (2019) Quantifying relationships between watershed characteristics and hydroecological indices of Missouri streams. Sci Total Environ 654:3005–3015

    Google Scholar 

  9. Bogan E, Doina STAN, Vărvăruc D (2015) The impact of anthropogenic activities on components of the natural environment of the Titu plain. GEOREVIEW: scientific annals of Stefan cel Mare University of Suceava. Geogr Ser 24(1):54–64

    Google Scholar 

  10. Tabacchi E, Lambs L, Guilloy H, Planty-Tabacchi AM, Muller E, Decamps H (2000) Impacts of riparian vegetation on hydrological processes. Hydrol Process 14(16–17):2959–2976

    Article  Google Scholar 

  11. Cramer VA, Hobbs RJ (2002) Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: impacts and possible management responses. Austral Ecol 27(5):546–564

    Article  Google Scholar 

  12. Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Ning D, Hou Y, Liu S (2017) A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol 546:44–59

    Article  Google Scholar 

  13. Farooqi TJA, Abbas H, Hussain S (2020) The hydrological influence of forest harvesting intensity on streams: a global synthesis with implications for policy. Appl Ecol Environ Res 18(4):4987–5009

    Article  Google Scholar 

  14. Kanianska R, Kizeková M, Nováček J, Zeman M (2014) Land-use and land-cover changes in rural areas during different political systems: A case study of Slovakia from 1782 to 2006. Land Use Policy 36:554–566

    Article  Google Scholar 

  15. Bičík I, Kupková L, Jeleček L, Kabrda J, Štych P, Janoušek Z, Winklerová J (2015) Land use changes in Czechia 1845–2010. In: Land use changes in the Czech Republic 1845–2010. Springer, Cham, pp 95–170

    Chapter  Google Scholar 

  16. Štěrba O, Měkotová J, Bednář V, Šarapatka B, Rychnovská M, Kubíček F, Řehořek V (2008) Říční krajina a její ekosystémy. Univerzita Palackého v Olomouci, Olomouc. 391 p. (in Czech)

    Google Scholar 

  17. Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33

    Article  Google Scholar 

  18. Nienhuis NH (2008) Environmental history of the Rhine–Meuse Delta: an ecological story on evolving human-environmental relations coping with climate change and sea-level rise. Springer, Berlin

    Book  Google Scholar 

  19. Verhoeven JTA, Setten TL (2010) Agricultural use of wetlands: opportunities and limitations. Ann Bot 105(1):155–163

    Article  Google Scholar 

  20. Grinchenko OS, Sviridova TV, Kontroshchikov VV (2020) Long-term dynamics of ecosystems in the north of Moscow region (rationale for creation of the “crane country” nature park). Ecosyst Ecol Dynam 4(1):138–169

    Google Scholar 

  21. Pithart D, Dostál T, Langhammer J, Janský B (2012) Význam retence vody v říčních nivách. Daphne ČR – Institut aplikované ekologie. 141 p. (in Czech)

    Google Scholar 

  22. Starke P, Göbel P, Coldewey WG (2010) Urban evaporation rates for water-permeable pavements. Water Sci Technol 62(5):1161–1169

    Article  CAS  Google Scholar 

  23. Wang L, Qu JJ (2007) NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys Res Lett 34(L20405)

    Google Scholar 

  24. Hale R, Scoggins M, Smucker NJ, Suchy AK (2016) Effects of climate on the expression of the Urban stream syndrome. Freshwater Sci 35(1):421–428

    Article  Google Scholar 

  25. Vietz GJ, Walsh CJ, Fletcher TD (2016) Urban hydrogeomorphology and the Urban stream syndrome: treating the symptoms and causes of geomorphic change. Prog Phys Geogr Earth Environ 40(3):480–492

    Article  Google Scholar 

  26. Murphy B, Wre D, Asce M (2020) Urban stream assessment procedure: a framework for assessing stream health in the Urban environment. Watershed management conference, pp 99–108

    Google Scholar 

  27. Hartmann P, Zink A, Fleige H, Horn R (2012) Effect of compaction, tillage and climate change on soil water balance of Arable Luvisols in Northwest Germany. Soil Tillage Res 124:211–218

    Article  Google Scholar 

  28. European Commission (2013) Mapping and assessment of ecosystems and their services an analytical framework for ecosystems assessments under action 5 of EU biodiversity stategy to 2020: discussion paper-final April 2013. Publication Office, Luxembourg. https://doi.org/10.2779/12398

    Book  Google Scholar 

  29. Hartmann T, Slavíková L, McCarthy S (2019) Nature-based flood risk management on private land: disciplinary perspectives on a multidisciplinary challenge. Springer, Cham

    Book  Google Scholar 

  30. Wilkinson ME (2019) Commentary: Mr. Pitek’s land from a perspective of managing hydrological extremes: challenges in upscaling and transferring knowledge. In: Hartmann T, Slavíková L, McCarthy S (eds) Nature-based flood risk management on private land disciplinary perspectives on a multidisciplinary challenge. Springer, Cham, pp 69–76

    Chapter  Google Scholar 

  31. Shine C, de Klemm C (1999) Wetlands, water and the law. Using law to advance wetland conservation and wise use. IUCN environmental policy and law paper 38. 332 p

    Google Scholar 

  32. Hájek M, Vrabcová P (2020) Consideration of forest ecosystems services in environmental management accounting. Wood Res 65(1):135–148

    Article  Google Scholar 

  33. RISWC (2020) SOWAC GIS geoportal – soil in maps. Research Institute for Soil and Water Conservation [online] Accessed 9 Apr 2020. https://geoportal.vumop.cz/index.php?projekt=vodni

  34. CHMI (2020) Monthly and annual data – average air temperature and precipitation totals. Czech Hydrometeorological Institute [online] Accessed 9 Aug 2020. http://portal.chmi.cz/historicka-data/pocasi/mesicni-data/mesicni-prehledy-pozorovani

  35. T.G.M. WRI (2006) Characteristics of streams and river basins in the Czech Republic. T.G.M. Water Research Institute (online). Accessed 8 July 2020 https://www.dibavod.cz/index.php?id=24

  36. Rajnoch D (2015) Návrh PPO na zvolené části toku (Design of flood protection). Diploma thesis. Faculty of Civil Engineering, Institute of Water Structures, Brno University of Technology. 61 p. (in Czech)

    Google Scholar 

  37. NCA CR (2014) Habitat mapping layer [electronic database]. Version 2014. Prague. Nature Conservation Agency of the Czech Republic, Global Change Research Institute CAS

    Google Scholar 

  38. Pechanec V, Cudlín P, Machar I, Brus J, Kilianová H (2020) Modelling of the water retention capacity of the landscape. In: Zelenakova M, Fialová J, Negm A (eds) Assessment and protection of water resources in the Czech Republic. Springer water. Springer, Cham

    Google Scholar 

  39. US SCS (1956) National Engineering Handbook, section 5: hydraulics. United States. Soil Conservation Service

    Google Scholar 

  40. Janeček M, Kovář P (2010) Aktuálnost “Metody čísel odtokových křivek – CN” k určování přímého odtoku z malého povodí. Vodní hospodářství 7:187–190. (in Czech)

    Google Scholar 

  41. US SCS (1972) ‘Hydrology, National Engineering Handbook, supplement A, section 4, chapter 10, Soil Conservation Service, U.S.D.A., Washington

    Google Scholar 

  42. Zhao Y, Wei F, Yang H, Jiang Y (2011) Discussion on using antecedent precipitation index to supplement relative soil moisture data series. Procedia Environ Sci 10:1489–1495

    Article  Google Scholar 

  43. Janeček M (2012) Ochrana zemědělské půdy před erozí. Česká zemědělská univerzita, Praha. 113 p. (in Czech)

    Google Scholar 

  44. Pasák V (1983) Protection of agricultural soils against erosion. Research Institute of Melioration and Soil Protection, Prague. (in Czech)

    Google Scholar 

  45. Sun D, Yang H, Guan D, Yang M, Wu J, Yuan F, Jin C, Wang A, Zhang Y (2018) The effects of land use change on soil infiltration capacity in China: a meta-analysis. Sci Total Environ 626:1394–1401

    Article  CAS  Google Scholar 

  46. Mishra SK, Sahu RK, Eldho TI, Jain MK (2006) An improved IaS relation incorporating antecedent moisture in SCSCN methodology. Water Resour Manage 20:643–660

    Article  Google Scholar 

  47. ESA (2019) Copernicus – overview [online]. Accessed 9 Aug 2019. http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4

  48. Antognelli S (2019) NDVI and NDMI Vegetation Indices: Instruction for use [online]. Accessed 10 Aug 2019. https://www.agricolus.com/en/indici-vegetazione-ndvindmi-istruzioni-luso/

  49. Seják J, Cudlín P, Pokorný J, Zapletal M, Petříček V, Guth J, Chuman T, Romportl D, Skořepová I, Vacek V, Vyskot I, Černý K, Hesslerová P, Burešová R, Prokopová M, Plch R, Engstová B, Stará L (2010) Hodnocení funkcí a služeb ekosystémů České republiky. Univerzita JE Purkyně v Ústí nad Labem, Fakulta životního prostředí 198 p. (in Czech)

    Google Scholar 

  50. European Environment Agency (2015) Water retention potential of Europe’s forests. https://doi.org/10.2800/790618

  51. El Kateb H, Zhang H, Zhang P, Mosandl R (2013) Soil erosion and surface runoff on different vegetation covers and slope gradients: a field experiment in southern Shaanxi Province, China. Catena 105:1–10

    Article  Google Scholar 

  52. Marchi L, Borga M, Preciso E, Gaume E (2010) Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J Hydrol 394:118–133

    Article  Google Scholar 

  53. van Dijk AIJM, Bruijnzeel LA (2001) Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. J Hydrol 247:230–238

    Article  Google Scholar 

  54. Kermavnar J, Vilhar U (2017) Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosyst 20:1373–1387

    Article  Google Scholar 

  55. Černý T, Dohnal M, Tesař M (2014) Význam intercepce v hydrologickém cyklu povodí pramenných oblastí. Stavební obzor 5–6:110–114

    Google Scholar 

Download references

Acknowledgment

The authors of this chapter are grateful to BSc. Kateřina Machová for her assistance in processing of background data for modelling and cooperation during review of the literature. The authors also thank two reviewers for their valuable comments and recommendations that helped to significantly improve the quality of this chapter. This research was funded by the Ministry of Education, Youth and Sports of the Czech Republic within the project “LAND4FLOOD: Natural Flood Retention on Private Land”, Reg. No. LTC18025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Jakubínský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jakubínský, J., Pechanec, V., Cudlín, O., Purkyt, J., Cudlín, P. (2021). Identification of Surface Runoff Source Areas as a Tool for Projections of NBS in Water Management. In: Ferreira, C.S.S., Kalantari, Z., Hartmann, T., Pereira, P. (eds) Nature-Based Solutions for Flood Mitigation. The Handbook of Environmental Chemistry, vol 107. Springer, Cham. https://doi.org/10.1007/698_2021_775

Download citation

Publish with us

Policies and ethics