Skip to main content

Surface Roughness of Graphite and Aluminium Alloy After Hydro-abrasive Machining

  • Conference paper
  • First Online:
Advances in Manufacturing

Abstract

The paper compares the quality of machined surface of graphite and aluminium alloy by abrasive waterjet using the focusing tube with a diameter of d f1  = 0.5 mm and d f2  = 0.78 mm. The machining was carried out using the technology of rotating workpiece disintegration by abrasive waterjet. Abrasive tangential waterjet was used to carry out the experiment (water pressure P = 400 MPa). Workpieces were clamped in the rotating chucking appliance with rotation frequency n = 300 min−1. The change in focusing tube diameter caused the change in values of roughness parameters and also caused the change of resulting shape of workpieces. Values of roughness parameters were measured using the MicroProf FRT optic profilometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma, V., Chattopadhyaya, S., Hloch, S.: Multi response optimization of process parameters based on Taguchi-Fuzzy model for coal cutting by water jet technology. Int. J. Adv. Manuf. Technol. 56, 1019–1025 (2011)

    Article  Google Scholar 

  2. Hreha, P., Radvanská, A., Hloch, S., Peržel, V., Królczyk, G., Monková, K.: Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting. Int. J. Adv. Manuf. Technol. 77, 763–774 (2015)

    Article  Google Scholar 

  3. Hreha, P., Radvanska, A., Knapcíkova, L., Krolczyk, G.M., Legutko, S., Krolczyk, J., et al.: Roughness parameters calculation by means on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. XXII 2, 315–326 (2015)

    Google Scholar 

  4. Manu, R., Babu, N.R.: Influence of jet impact angle on part geometry in abrasive waterjet turning of aluminium alloys. Int. J. Mach. Mach. Mater. 3 (2008)

    Google Scholar 

  5. Cárach, J., Hloch, S., Hlaváček, P., Ščučka, J., Martinec, P., Petrů, J., et al.: Tangential turning of Incoloy alloy 925 using abrasive water jet technology. Int. J. Adv. Manuf. Technol. 82, 1747–1752 (2016)

    Article  Google Scholar 

  6. Hloch, S., Hlaváček, J., Vasilko, K., Cárach, J., Samardžić, I., Kozak, D., et al.: Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgija 53, 537–540 (2014)

    Google Scholar 

  7. Sitek, L., Foldyna, J., Souček, K., Shaping of rock specimens for testing of uniaxial tensile strength by high speed abrasive water jet: first experience. In: Impact of Human Activity on the Geological Environment—Proceedings of the International Symposium of the International Society for Rock Mechanics, Eurock (2005)

    Google Scholar 

  8. Hlaváček, P., Cárach, J., Hloch, S., Vasilko, K., Klichová, D., Klich, J., et al.: Sandstone turning by abrasive waterjet. Rock Mech. Rock Eng. 48. ISSN 2489–93 (2015)

    Google Scholar 

  9. Hutyrova, Z., Scucka, J., Hloch, S., Hlavacek, P., Zelenak, M.: Turning of wood plastic composites by water jet and abrasive water jet. Int. J. Adv. Manuf. Technol. 84, 1615–1623 (2016)

    Google Scholar 

  10. Duplak, J., Hatala, M., Botko, F., Kormos, M.: Analysis of cutting tools durability importance in turning process of steel C60. In: Key Engineering Materials: Operation and Diagnostics of Machines and Production Systems Operational States 3, vol. 669, pp. 319–326 (2016)

    Google Scholar 

  11. Zhong, Z.W., Han, Z.Z.: Turning of glass with abrasive waterjet. Mater. Manuf. Process 17, 339–349 (2002)

    Article  Google Scholar 

  12. Axinte, D.A., Stepanian, J.P., Kong, M.C., McGourlay, J.: Abrasive waterjet turning-An efficient method to profile and dress grinding wheels. Int. J. Mach. Tools Manuf. 49, 1–6 (2009)

    Article  Google Scholar 

  13. Liu, D., Huang, C., Wang, J., Zhu, H., Yao, P., Liu, Z.: Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box-Behnken design. Ceram Int. 40 (2014)

    Google Scholar 

  14. den Dunnen, S., Mulder, L., Kerkhoffs, G.M.M.J., Dankelman, J., Tuijthof, G.J.M.: Waterjet drilling in porcine bone: the effect of the nozzle diameter and bone architecture on the hole dimensions. J. Mech. Behav. Biomed. Mater. 27, 84–93 (2013)

    Article  Google Scholar 

  15. Hloch, S., Valíček, J., Kozak, D.: Preliminary results of experimental cutting of porcine bones by abrasive waterjet. Tech. Vjesn. 18, 467–470 (2011)

    Google Scholar 

  16. Lissek, F., Kaufeld, M., Tegas, J., Hloch, S.: Online-monitoring for abrasive waterjet cutting of CFRP via acoustic emission: Evaluation of machining parameters and work piece quality due to burst analysis. Proc. Eng. 67–76 (2016)

    Google Scholar 

  17. Hreha, P., Hloch, S.: Potential use of vibration for metrology and detection of surface topography created by abrasive waterjet. Int. J. Surf. Sci. Eng. 7, 135–151 (2013)

    Article  Google Scholar 

  18. Hreha, P., Radvanska, A., Carach, J., Lehocka, D., Monkova, K., Krolczyk, G., et al.: Monitoring of focusing tube wear during Abrasive WaterJet (AWJ) cutting of AISI 309. Metalurgija 53, 533–536 (2014)

    Google Scholar 

  19. Lehocka, D., Klich, J., Foldyna, J., Hloch, S., Krolczyk, J.B., Carach, J., et al.: Copper alloys disintegration using pulsating water jet. Measurement 82, 375–383 (2016)

    Article  Google Scholar 

  20. Lebar, A., Junkar, M., Poredoš, A., Cvjeticanin, M.: Method for online quality monitoring of AWJ cutting by infrared thermography. CIRP J. Manuf. Sci. Technol. 2, 170–175 (2010)

    Article  Google Scholar 

  21. Hashish, M., South, A.: Optimization factors in abrasive—waterjet machining. J. Eng. Ind. 1 (1991)

    Google Scholar 

  22. Dong, Y., Liu, W., Zhang, H., Zhang, H.: On-line recycling of abrasives in abrasive water jet cleaning. Proc. CIRP (2014)

    Google Scholar 

  23. Arola, D., Ramulu, M.: A study of Kerf characteristics in abrasive waterjet machining of graphite/epoxy composite. J. Eng. Mater. Technol. Trans. ASME 118, 256–265 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under Contract No. APVV-207-12. Experiments were carried out with the support of the Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use—Sustainability Program, reg. no. LO1406 financed by Ministry of Education, Youth and Sports of the Czech Republic, and with support for the long-term conceptual development of the research institution RVO: 68145535.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominika Lehocka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Carach, J., Lehocka, D., Legutko, S., Hloch, S., Chattopadhyaya, S., Dixit, A.R. (2018). Surface Roughness of Graphite and Aluminium Alloy After Hydro-abrasive Machining. In: Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M. (eds) Advances in Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68619-6_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68619-6_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68618-9

  • Online ISBN: 978-3-319-68619-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics