Skip to main content
Log in

Experimental and Simulation of Electric Transport in Alkali Antimonite Glasses

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The non-linear response of various physical properties of glasses on mixing of alkali ions is a well-known anomaly in materials science. In this paper, the mixed alkali effect in antimony oxide based glasses with composition 60Sb2O3–20WO3–(20 – x)Li2O–x(M2O), where x = 0, 5, 10, 15, 20 (in mol %) and M = Na or K, is studied. The influence of Na/Li and K/Li ratios on ionic AC and DC conductivities is studied. Temperature dependences of the DC conductivity obey Arrhenius-like relation. The conductivity steeply decreases with increasing Na or K content due to larger ionic radius of Na or K ions compared to that of Li. The relation between composition and local movement of electrical charge was investigated and quantified using the measurement of thermally stimulated depolarization currents. The artificial neural network methods for optimizing experimental parameters used in this paper represent a new approach in comparison with works done on glasses with similar composition. The prepared numerical model could be used for the description of the influence of polarization parameters and the optimization of further measurements oriented on activation energies of ion polarization related to local transport of electrical charge, i.e. Li+ and Na+ ions in our case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Swenson, J. and Adams, S., Mixed alkali effect in glasses, Phys. Rev. Lett., 2003, vol. 90, p. 155507.

    Article  Google Scholar 

  2. Kubliha, M., Maache, D., Bošák, O., Minárik, S., Trnovcová, V., Lukic-Petrovic, S., and Soltani, M.T., Mixed alkaline effect in antimony-based glasses, Russ. J. Electrochem., 2019, vol. 55, p. 510.

    Article  CAS  Google Scholar 

  3. Ouannes, K., Soltani, M.T., Poulain, M., Boulon, G., Alombert-Goget, G., Guyot, Y., Pillonnet, A., and Lebbou, K. Spectroscopic properties of Er3+-doped antimony oxide glass, J. Alloys Compd., 2014, vol. 603, p. 132.

    Article  CAS  Google Scholar 

  4. Zavadil, J., Ivanova, Z.G., Kostka, P., Hamzaoui, M., and Soltani, M.T., Photoluminescence study of Er-doped zinc–sodium–antimonite glasses, J. Alloys Compd., 2014, vol. 611, p. 111.

    Article  CAS  Google Scholar 

  5. Masuda, H., Ohta, Y., and Morinaga, K., Structure of binary antimony oxide glass, J. Jpn. Inst. Met., 1995, vol. 59, no. 1, p. 31.

    Article  CAS  Google Scholar 

  6. Som, T. and Karmakar, B., Efficient green and red fluorescence upconversion in erbium doped new low phonon antimony glasses, Opt. Mater., 2009, vol. 31, no. 4, p. 609.

    Article  CAS  Google Scholar 

  7. Qian, Q., Zhang, Q.Y., Jiang, H.F., Yang, Z.M., and Jiang, Z.H., The spectroscopic properties of Er3+-doped antimony-borate glasses, Phys. B, 2010, vol. 405, p. 2220.

    Article  CAS  Google Scholar 

  8. de Araujo, R.E., de Araujo, C.B., Poirier, G., Poulain, M., and Messaddeq, Y., Nonlinear optical absorption of antimony and lead oxyhalide glasses, Appl. Phys. Lett., 2002, vol. 81, no. 25, p. 4694.

    Article  CAS  Google Scholar 

  9. Terashima, K., Hashimoto, T., Uchnio, T., Kim, S., and Yoko, T., Structure and nonlinear optical properties of Sb2O3–B2O3 binary glasses, J. Ceram. Soc. Jpn., 1996, vol. 104, p. 1008.

    Article  CAS  Google Scholar 

  10. Minelly, J. and Ellison, A., Applications of antimony-silicate glasses for fiber optic amplifiers, Opt. Fiber Technol., 2002, vol. 8, p. 123.

    Article  CAS  Google Scholar 

  11. Kubliha, M., Soltani, M.T., Trnovcová, V., Legouera, M., Labaš, V., Kostka, P., Le Coq, D., and Hamzaoui, M., Electrical, dielectric, and optical properties of Sb2O3–Li2O–MoO3 glasses, J. Non-Cryst. Solids, 2015, vol. 428, p. 42.

    Article  CAS  Google Scholar 

  12. Kubliha, M., Investigating Structural Changes and Defects of Non-Metallic Materials via Electrical Methods, 1 st ed. Dresden: Forschungszentrum Dresden–Rossendorf, 2009.

  13. Kalužný, J., Kubliha, M., Labaš, V., Poulain, M., and Taibi, Y., Electrical and dielectrical properties of Sb2O3–V2O5–K2O glasses, J. Non-Cryst. Solids, 2009, vol. 355, nos. 37–42, p. 2031.

    Article  Google Scholar 

  14. Labaš, V., Poulain, M., Kubliha, M., Trnovcová, V., and Goumeidane, F., Electrical, dielectric and optical properties of Sb2O3–PbCl2–MoO3 glasses, J. Non-Cryst. Solids, 2013, vol. 377, p. 66.

    Article  Google Scholar 

  15. Castro, A., Bréhault, A., Carcreff, J., Bošák, O., Kubliha, M., Trnovcová, V., Dománková, M., Šiljegović, M., Calvez, L., Labaš, V., and Le Coq, D., Lithium and lead chloride antimonate glasses, J. Non-Cryst. Solids, 2018, vol. 499, p. 66.

    Article  CAS  Google Scholar 

  16. Aggarwal, Ch.C., Neural Networks and Deep Learning, Springer, 2018.

    Book  Google Scholar 

  17. TIBCO Statistica, 2020. https://www.tibco.com/.

  18. Cramer, C., Funke, K., Roling, B., Saatkamp, T., Wilmer, D., Ingram, M.D., Pradel, A., Ribes, M., and Taillades, G., Ionic and polaronic hopping in glass, Solid State Ionics, 1996, vol. 86, p. 481.

    Article  Google Scholar 

  19. Jonscher, A.K., Dielectric Relaxation in Solids, London: Chelsea Dielectrics Press, 1983.

    Google Scholar 

  20. RossMacDonald, J., Possible universalities in the ac frequency response of dispersed, disordered materials, J. Non-Cryst. Solids, 1997, vol. 210, p. 70.

    Article  Google Scholar 

  21. Day, D.E., Mixed alkali glasses—their properties and uses, J. Non-Cryst. Solids, 1976, vol. 21, p. 343.

    Article  CAS  Google Scholar 

  22. Isard, J.O., The mixed alkali effect in glass, J. Non-Cryst. Solids, 1969, vol. 1, p. 235.

    Article  CAS  Google Scholar 

  23. Bunker, B.C., Arnold, G.W., Beauchamp, E.K., and Day, D.E., Mechanisms for alkali leaching in mized-NaK silicate glasses, J. Non-Cryst. Solids, 1983, vol. 58, p. 295.

    Article  CAS  Google Scholar 

  24. Bunde, A., Ingram, M.D., and Maass, P., The dynamic structure model for ion transport in glasses, J. Non-Cryst. Solids, 1994, vols. 172–174, p. 1222.

    Article  Google Scholar 

  25. Bunde, A., Ingram, M.D., Maass, P., and Ngai, K.L., Mixed alkali effects in ionic conductors: a new model and computer simulations, J. Non-Cryst. Solids, 1991, vols. 131–133, p. 1109.

    Article  Google Scholar 

  26. Balasubramanian, S. and Rao, K.J., A molecular dynamics study of the mixed alkali effect in silicate glasses, J. Non-Cryst. Solids, 1995, vol. 181, p. 157.

    Article  CAS  Google Scholar 

  27. Tomozawa, M., Alkali ionic transport in mixed alkali glasses, J. Non-Cryst. Solids, 1993, vol. 152, p. 59.

    Article  CAS  Google Scholar 

  28. Cramer, C., Brunklaus, S., Ratai, E., and Gao, Y., New mixed alkali effect in the ac conductivity of ion-conducting glasses, Phys. Rev. Lett., 2003, vol. 91, p. 266601.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Slovak Science Foundations, projects VEGA 1/0235/18, VEGA 1/0144/20, and APVV DS-FR-19-0036 (Serbian project DS 13), P. Kostka acknowledges the Czech Science Foundation—project no. 19-07456S and the Ministry of Education, Youth and Sports of the Czech Republic – project no. 8X20053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bošák.

Ethics declarations

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

INFORMATION OF PERSONAL CONTRIBUTIONS OF AUTHORS

M.T. Soltani prepared samples of glasses for experiments. O. Bošák and M. Kubliha performed measurements of direct electrical conductivity and modular spectra. V. Labas and O. Bošák performed TSDC measurements. S. Lukic-Petrovic and N. Celic analysed modular spectra. P. Tanuska and M. Kebisek created neural network model. M. Kubliha and O. Bošák wrote the first draft of the manuscript. All authors edited the manuscript and approved the final version.

ADDITIONAL INFORMATION

Authors ORCID ID. M. Kubliha (0000-0003-4987-6233), O. Bošák (0000-0001-6467-5398), P. Kostka (0000-0003-2868-1322), V. Labas (0000-0001-9903-8508), S. Lukic-Petrovic (0000-0003-3166-0418), N. Celic (0000-0002-6475-1562), P. Tanuska (0000-0001-7025-1911), M. Kebisek (0000-0002-3771-3835), M.T. Soltani (0000-0002-6303-4190).

Additional information

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubliha, M., Bošák, O., Kostka, P. et al. Experimental and Simulation of Electric Transport in Alkali Antimonite Glasses. Russ J Electrochem 57, 688–699 (2021). https://doi.org/10.1134/S1023193521070077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521070077

Keywords:

Navigation