Skip to main content
Log in

Influence of NaI Additions on the Electrical, Dielectric, and Transport Properties in the GeS2–Ga2S3–NaI Glass System

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The vitreous system GeS2–Ga2S3 can incorporate a large amount of alkali salts, for example NaI, and such materials have a potential to be used as solid electrolytes for all-solid-state batteries. The present work focuses on the effects of NaI addition in the (GeS2)x(Ga2S3)100 –x glass matrix, where x = 65, 72, 80, and 88. AC and DC electrical and dielectric properties were measured in the temperature range from 20 up to 200°C and in the frequency range 1 Hz–100 kHz, in air, at different temperatures by steps of 1°C. The values of electrical conductivity significantly increase with increasing of NaI content. The DC conductivity values 2.5 × 10–4 S m–1 at room temperature were detected for glasses with 25 and 30 mol % of NaI in (GeS2)72(Ga2S3)28 and with 30 mol % NaI in (GeS2)65(Ga2S3)35 matrices. Samples with NaI concentration higher than 20 mol % show a poor stability against moisture. In order to improve their stability the glass composition was modified by addition of 2.5 mol % P2S5 in the system. The activation energy values slightly decrease with NaI content. The GeS2/Ga2S3 ratio and P2S5 addition to the glass matrix have low effect on transport properties. The DC conductivity, electrical relaxation, and depolarization mechanisms are similar. Electrical charge transfer is connected with hopping of Na+ ions or reorientation of dipoles containing these ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Chen, F., Yua, Q., Qiao, B., Xu, T., Dai, S., and Ji, W., Investigations of structure and nonlinear optical properties of gold doped germanium-gallium-sulfur chalcogenide glasses, J. Non-Cryst. Solids, 2015, vol. 412, pp. 30–34.

    Article  CAS  Google Scholar 

  2. Adam, J.L., Zhang, X.H., Shiryaev, V.S., Churbanov, M.F., Bureau, B., Lucas, P., Musgraves, J.D., Danto, S., Richardson, K., Sanghera, J., Gibson, D., Tanaka, K., Pradel, A., Ribes, M., Shpotyuk, O., Golovchak, R., Kozdras, A., Orava, J., Kohoutek, T., Wagner, T., Calvez, L., Heo, Chung, W.J., Boussard-Plédel, C., Troles, J., Brilland, L., Pant, R., Eggleton, B.J., Hewak, D.W., Nazabal, V., Kityk, I., Jain, H., Kovalskiy, A., Vlcek, M., Hyot, B., Tatsumisago, M., and Hayashi, A., Chalcogenide Glasses: Preparation, Properties and Applications. in Chalcogenide Glasses, Adam, J.-L. and Zhang, X., Eds., Woodhead Publ., 2014.

    Google Scholar 

  3. Agrawal, G., Applications of Nonlinear Fiber Optics, Acad. Press, 2008.

    Google Scholar 

  4. Bréhault, A., Cozic, S., Boidin, R., Calvez, L., Bychkov, E., Masselin, P., Zhang, X., and Le Coq, D., Influence of NaX (X = I or Cl) additions on GeS2–Ga2S3 based glasses, J. Solid State Chem., 2014, vol. 220, pp. 238–244.

    Article  CAS  Google Scholar 

  5. Guo, H., Zhai, Y., Tao, H., Dong, G., and Zhao, X., Mater. Sci. Eng. B Solid, 2007, vol. 138, pp. 235–240.

    Article  CAS  Google Scholar 

  6. Tverjanovich, A., Tveryanovich, Y.S., and Loheider, S., J. Non-Cryst. Solids, 1996, vol. 208, pp. 49–55.

    Article  CAS  Google Scholar 

  7. Masselin, P., LeCoq, D., Cuisset, A., and Bychkov, E., Opt. Mater. Exp., 2012, vol. 2, no. 12, pp. 1768–1775.

    Article  CAS  Google Scholar 

  8. Pethes, I., Nazabal, V., Chahal, R., Bureau, B., Kaban, I., Belin, S., and Jovari, P., Local motifs in GeS2–Ga2S3 glasses, J. Alloys Compd., 2016, vol. 673, pp. 149–157.

    Article  CAS  Google Scholar 

  9. Loireau-Lozac’h, A.M., Keller-Besrest, F., and Bénazeth, S., Short and medium range order in Ga–Ge–S glasses: an X-ray absorption spectroscopy study at room and low temperatures, J. Solid State Chem., 1996, vol. 123, pp. 60–67.

    Article  Google Scholar 

  10. Yao, W.L. and Martin, S.W., Ionic conductivity of glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2) system (M = Li, Na, K and Cs), Solid State Ionics, 2008, vol. 178, nos. 33–34, pp. 1777–1784.

    Article  CAS  Google Scholar 

  11. Tver’yanovich, Y.S., Aleksandrov, V.V., Murin, I.V., and Nedoshovenko, E.G., Glass forming ability and cationic transport in gallium containing chalcohalide glasses, J. Non-Cryst. Solids, 1999, vols. 256–257, pp. 237–241.

    Article  Google Scholar 

  12. Kolař, J., Wágner, T., Zima, V., Stehlík, Š., Frumarová, B., Beneš, L., Vlček, M., Frumar, M., and Kasap, S.O., Ion conductive chalcohalide glasses in LiI–Ga2S3–GeS2 system, J. Non-Cryst. Solids, 2011, vol. 357, nos. 11–13, pp. 2223–2227.

    Article  CAS  Google Scholar 

  13. Takada, K., Inada, T., Kajiyama, A., Kouguchi, M., Sasaki, H., Kondo, S., Michiue, Y., Nakano, S., Tabuchi, M., and Watanabe, M., Solid State Ionics, 2004, vol. 172, pp. 25–30.

    Article  CAS  Google Scholar 

  14. Hayashi, A., Noi, K., Sakuda, A., and Tatsumisago, M., Nat. Commun., 2012, vol. 3, p. 856.

    Article  CAS  PubMed  Google Scholar 

  15. Bychkov, E., Tveryanovich, Y., and Vlasov, Y., in Applications of Chalcogenide Glasses, Semiconductors and Semi-metals Series, Fairman, R. and Ushkov, B., Eds., New York-London: Elsevier, 2004.

    Google Scholar 

  16. Furmar M. and Wagner, T., Curr. Opin. Solid State Mater. Sci., 2003, vol. 7, p. 117.

    Article  CAS  Google Scholar 

  17. Patil, D.S., Konale, M.S., Kolar, J., Shimakawa, K., Zima, V., and Wagner, T., Ionic conductivity study of LiI–Ga2S3–GeS2 chalcogenide glasses using a random-walk approach, Pure Appl. Chem., 2015, vol. 87, no. 3, pp. 249–259.

    Article  CAS  Google Scholar 

  18. Judez, X., Zhang, H., Li, C., Eshetu, G.G., Gonzalez-Marcos, J.A., Armand, M., and Rodriguez-Martinez, L.M., Review solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges, J. Electrochem. Soc., 2018, vol. 165, pp. A6008–A6016.

    Article  CAS  Google Scholar 

  19. Manthiram, A., Yu, X., and Wang, S., Lithium battery chemistries enabled by solid state electrolytes, Nat. Rev. Microbiol., 2017, vol. 2, p. 16103.

    CAS  Google Scholar 

  20. Lin, Z. and Liang, C., Lithium-sulfur batteries: from liquid to solid cells, J. Mater. Chem. A, 2015, vol. 3, pp. 936–958.

    Article  CAS  Google Scholar 

  21. Fan, B., et al., Ionic conductive GeS2–Ga2S3–Li2S–LiI glass powders prepared by mechanical synthesis, J. Alloys Compd., 2018, vol. 740, pp. 61–67.

    Article  CAS  Google Scholar 

  22. Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., and Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 2016, vol. 1, p. 16030.

    Article  CAS  Google Scholar 

  23. Seino, Y., Ota, T., Takada, K., Hayashi, A., and Tatsumisago, M., A sulphide lithium superion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 2014, vol. 7, pp. 627–631.

    Article  CAS  Google Scholar 

  24. Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., and Mitsui, A., A lithium superionic conductor, Nat. Mater., 2011, vol. 10, pp. 682–686.

    Article  CAS  Google Scholar 

  25. Yamashita, M. and Yamanaka, H., Formation and ionic conductivity of Li2S–GeS2–Ga2S3 glasses and thin films, Solid State Ionics, 2003, vol. 158, pp. 151–156.

    Article  CAS  Google Scholar 

  26. Jiang, Ch., Li, H., and Wanga, Ch., Recent progress in solid-state electrolytes for alkali-ion batteries, Sci. Bull., 2017, vol. 62, pp. 1473–1490.

    Article  CAS  Google Scholar 

  27. Paraskiva, A., Bokova, M., and Bychkov, E., Na+ ion conducting glasses in the NaCl–Ga2S3–GeS2 system: a critical percolation regime, Solid State Ionics, 2017, vol. 299, pp. 2–7.

    Article  CAS  Google Scholar 

  28. Borisova, Z.U., Bychkov, E.A., and Tver’yanovich, Y.S., Interaction of Metals with Chalcogenide Glasses, Leningrad: Leningrad State Univ., 1991.

    Google Scholar 

  29. Yao, W. and Martin, S.W., Solid State, Ionics, 2008, vol. 78, pp. 1777–1784.

    Article  CAS  Google Scholar 

  30. Martin, S.W., Bischoff, C., and Schuller, K., J. Phys. Chem., 2015, vol. 119, no. 51, pp. 15738–15751.

    Article  CAS  Google Scholar 

  31. Kalužný, J., Kubliha, M., Labaš, V., Poulain, M., and Taibi, Y., J. Non-Cryst. Solids, 2009, vol. 355, nos. 37–42, pp. 2031–2034.

    Article  CAS  Google Scholar 

  32. Kubliha, M., Soltani, M.T., Trnovcová, V., Legouera, M., Labaš, V., Kostka, P., Le Coq, D., and Hamzaoui, M., J. Non-Cryst. Solids, 2015, vol. 428, pp. 42–48.

    Article  CAS  Google Scholar 

  33. Labaš, V., Poulain, M., Kubliha, M., Trnovcová, V., and Goumeidane, F., J. Non-Cryst. Solids, 2013, vol. 377, pp. 66–69.

    Article  CAS  Google Scholar 

  34. Moynihan, C.T., Bosech, L.P., and Laberge, N.L., Phys. Chem. Glasses, 1973, vol. 14, p. 122.

    CAS  Google Scholar 

  35. Molak, A., Paluch, M., Pawlus, S, Klimontko, J., Ujma, Z., and Gruszka, I., J. Phys. D: Appl. Phys., 2005, vol. 38, p. 1450.

    Article  CAS  Google Scholar 

  36. Davidson, D.W. and Cole, R.H., J. Chem. Phys., 1950, vol. 18, p. 1417.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bosak.

Additional information

The article is published in the original.

Based on the paper presented at the XIV Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka (Russia), September 9–13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosak, O., Castro, A., Labas, V. et al. Influence of NaI Additions on the Electrical, Dielectric, and Transport Properties in the GeS2–Ga2S3–NaI Glass System. Russ J Electrochem 55, 501–509 (2019). https://doi.org/10.1134/S1023193519060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519060053

Keywords:

Navigation