Skip to main content
Log in

Grain Coarsening of Columnar Iron Polycrystals by Repetitive Cold Work and Annealing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Experimental studies on single crystals of pure metals are essential for understanding the mechanisms governing their plastic deformation as well as for interpretations of these observations using theoretical and atomistic models. Iron is especially interesting, because its low-temperature plastic response may be affected by ferromagnetism. However, the growth of large single crystals of iron from the melt is notoriously difficult due to the allotropic transformation between its face-centered and body-centered cubic phases. An alternative route is to start with polycrystalline iron of high purity and subject it to one or more cycles of cold work and subsequent annealing. This process is demonstrated here by utilizing 99.99 pct pure polycrystalline electrolytic iron with initially strong columnar microstructure. We investigate how the final grain size depends on the number of cold work cycles, annealing time in vacuum, and annealing temperature. The size distribution and characters of individual grains are assessed on etched samples using the electron backscatter diffraction analysis. The largest grains obtained by this process have the characteristic sizes above 2 mm and require four cycles of cold work, each followed by annealing at 870 °C for 8 hours. The probability density of grain sizes after optimal combination of cold work and annealing is well approximated by log-normal distribution. These results constitute guidelines to optimal processing of columnar polycrystals for further extraction of single-crystalline samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.E. Hermant: Acta Metall., 1968, vol. 16, pp. 1–6.

    Article  CAS  Google Scholar 

  2. H.K.D.H. Bhadeshia and R. Honeycombe: Steels—Microstructure and Properties, 3rd ed. Butterworth-Heinemann, Oxford, 2006, pp. 1–6.

    Google Scholar 

  3. H.C.H. Carpenter: Nature, 1926, vol. 118, pp. 266–69.

    Article  Google Scholar 

  4. G. Mayer and W.A. Backofen: Mater. Res. Bull., 1967, vol. 2, pp. 871–75.

    Article  CAS  Google Scholar 

  5. C. Antonione, F. Marino, G. Riontino, and M.C. Tabasso: J. Mater. Sci., 1977, vol. 12, pp. 747–50.

    Article  CAS  Google Scholar 

  6. S. Kadečková and B. Šesták: Krist. Tech., 1967, vol. 2, pp. 191–203.

    Article  Google Scholar 

  7. S. Kadečková and K.Z. Saleeb: J. Cryst. Growth, 1975, vol. 30, pp. 335–42.

    Article  Google Scholar 

  8. H.H. Kranzlein, M.S. Burton, and G.V. Smith: Mem. Sci. Rev. Metall., 1968, vol. 65, pp. 361–68.

    Google Scholar 

  9. H.E. Rosinger, W.J. Bratina, and G.B. Craig: J. Cryst. Growth, 1970, vol. 7, pp. 42–44.

    Article  CAS  Google Scholar 

  10. D.S. Tomalin and C.J. McMahon Jr.: Mater. Sci. Eng., 1971, vol. 8, pp. 54–56.

    Article  CAS  Google Scholar 

  11. D.J. Bailey and E.G. Brewer: Metall. Trans. A, 1975, vol. 6, pp. 403–08.

    Article  Google Scholar 

  12. K. Lubitz and G. Göltz: Appl. Phys., 1979, vol. 19, pp. 237–39.

    Article  CAS  Google Scholar 

  13. S. Jin, B. Kang, T. Kong, S.H. Hong, H.J. Shin, and R.S. Ruoffo: J. Alloys Compd., 2021, vol. 853, pp. 157–390.

    Article  Google Scholar 

  14. D.R. Almeida, P.R. Rios, D. Zöllner, and H.R.Z. Sandim: J. Mater. Res. Technol., 2020, vol. 9, pp. 11099–11110.

    Article  CAS  Google Scholar 

  15. Z.W. Zhang, G. Chen, and G.L. Chen: Acta Mater., 2007, vol. 55, pp. 5988–98.

    Article  CAS  Google Scholar 

  16. H. Hu: Can. Metall. Q., 1974, vol. 13, pp. 275–86.

    Article  CAS  Google Scholar 

  17. M.J.H. Simmons, P.A. Langston, and A.S. Burbidge: Powder Technol., 1999, vol. 102, pp. 75–83.

    Article  CAS  Google Scholar 

  18. C.S. Smith and L. Guttman: J. Met., 1953, vol. 5, pp. 81–87.

    Google Scholar 

  19. A.W. Thompson: Metallography, 1972, vol. 5, pp. 366–69.

    Article  Google Scholar 

  20. R.L. Fullman: Trans. AIME, 1953, vol. 197, p. 447.

    CAS  Google Scholar 

  21. J.H. Hensler: J. Inst. Met., 1968, vol. 96, pp. 190–92.

    Google Scholar 

  22. G.A. Miller, D.H. Avery, and W.A. Backofen: Trans. AIME, 1966, vol. 236, p. 1667.

    CAS  Google Scholar 

  23. P. Feltham: Acta Metall., 1957, vol. 5, pp. 97–105.

    Article  CAS  Google Scholar 

  24. F. Schückher: in Quantitative Microscopy. R.T. DeHoff and F.N. Rhines, eds., McGraw-Hill Book Co., New York, 1968, pp. 201–65.

    Google Scholar 

  25. C.R. Foster: Metall. Mater. Trans. A, 2022, vol. 53A. pp. 3507–11.

    Article  Google Scholar 

  26. D.A. Aboav and T.G. Langdon: Metallography, 1969, vol. 1, pp. 333–40.

    Article  CAS  Google Scholar 

  27. I.M. McKenna, S.O. Poulsen, E.M. Lauridsen, W. Ludwig, and P.W. Voorhees: Acta Mater., 2014, vol. 78, pp. 125–34.

    Article  CAS  Google Scholar 

  28. S. Schmidt, S.F. Nielsen, C. Gundlach, L. Margulies, X. Huang, and D. Juul Jensen: Science, 2004, vol. 305, pp. 229–32.

    Article  CAS  Google Scholar 

  29. E.M. Lauridsen, S. Schmidt, S.F. Nielsen, L. Margulies, H.F. Poulsen, and D. Juul Jensen: Scripta Mater., 2006, vol. 55, pp. 51–56.

    Article  CAS  Google Scholar 

  30. S. Schmidt, U.L. Olsen, H.F. Poulsen, H.O. Sørensen, E.M. Lauridsen, L. Margulies, C. Maurice, and D. Juul Jensen: Scripta Mater., 2008, vol. 59, pp. 491–94.

    Article  CAS  Google Scholar 

  31. S. Van Boxel, S. Schmidt, W. Ludwig, Y.B. Zhang, D. Juul Jensen, and W. Pantleon: Mater. Trans., 2014, vol. 55, pp. 128–36.

    Article  Google Scholar 

  32. J. Sun, A. Lyckegaard, Y.B. Zhang, S.A. Catherine, B.R. Patterson, F. Bachmann, N. Gueninchault, H. Bale, C. Holzner, E. Lauridsen, and D. Juul Jensen: IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 219, p. 012039.

    Article  Google Scholar 

  33. M. Fix, H. Schumann, S.G. Jantz, F.A. Breitner, A. Leineweber, and A. Jesche: J. Cryst. Growth, 2018, vol. 486, pp. 50–55.

    Article  CAS  Google Scholar 

  34. B.R.S. Rogne and C. Thaulow: Philos. Mag., 2014, vol. 95, pp. 1814–28.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jiří Svoboda for fruitful discussions on the strain anneal technique. This research was supported by the Czech Science Foundation, Grant No. 19-23411S. J.H. acknowledges financial support from the Ministry of Transport within the programme of long-term conceptual development of research institutions. Infrastructure of the CEITEC Nano Research Centre was utilized for the measurements made in this work.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflict of interest

The authors declare to have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Holzer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzer, J., Husťák, M., Hegrová, J. et al. Grain Coarsening of Columnar Iron Polycrystals by Repetitive Cold Work and Annealing. Metall Mater Trans A 54, 439–449 (2023). https://doi.org/10.1007/s11661-022-06866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06866-0

Navigation