Skip to main content

Advertisement

Log in

The Effect of Hapln4 Link Protein Deficiency on Extracellular Space Diffusion Parameters and Perineuronal Nets in the Auditory System During Aging

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hapln4 is a link protein which stabilizes the binding between lecticans and hyaluronan in perineuronal nets (PNNs) in specific brain regions, including the medial nucleus of the trapezoid body (MNTB). The aim of this study was: (1) to reveal possible age-related alterations in the extracellular matrix composition in the MNTB and inferior colliculus, which was devoid of Hapln4 and served as a negative control, (2) to determine the impact of the Hapln4 deletion on the values of the ECS diffusion parameters in young and aged animals and (3) to verify that PNNs moderate age-related changes in the ECS diffusion, and that Hapln4-brevican complex is indispensable for the correct protective function of the PNNs. To achieve this, we evaluated the ECS diffusion parameters using the real-time iontophoretic method in the selected region in young adult (3 to 6-months-old) and aged (12 to 18-months-old) wild type and Hapln4 knock-out (KO) mice. The results were correlated with an immunohistochemical analysis of the ECM composition and astrocyte morphology. We report that the ECM composition is altered in the aged MNTB and aging is a critical point, revealing the effect of Hapln4 deficiency on the ECS diffusion. All of our findings support the hypothesis that the ECM changes in the MNTB of aged KO animals affect the ECS parameters indirectly, via morphological changes of astrocytes, which are in direct contact with synapses and can be influenced by the ongoing synaptic transmission altered by shifts in the ECM composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, Sugahara K, Fawcett JW (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 281:17789–17800

    CAS  PubMed  Google Scholar 

  2. Bekku Y, Su WD, Hirakawa S, Fassler R, Ohtsuka A, Kang JS, Sanders J, Murakami T, Ninomiya Y, Oohashi T (2003) Molecular cloning of Bral2, a novel brain-specific link protein, and immunohistochemical colocalization with brevican in perineuronal nets. Mol Cell Neurosci 24:148–159

    CAS  PubMed  Google Scholar 

  3. Carulli D, Rhodes KE, Brown DJ, Bonnert TP, Pollack SJ, Oliver K, Strata P, Fawcett JW (2006) Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 494:559–577

    CAS  PubMed  Google Scholar 

  4. Matsumoto K, Shionyu M, Go M, Shimizu K, Shinomura T, Kimata K, Watanabe H (2003) Distinct interaction of versican/PG-M with hyaluronan and link protein. J Biol Chem 278:41205–41212

    CAS  PubMed  Google Scholar 

  5. Aspberg A, Miura R, Bourdoulous S, Shimonaka M, Heinegard D, Schachner M, Ruoslahti E, Yamaguchi Y (1997) The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein–protein interactions independent of carbohydrate moiety. Proc Natl Acad Sci USA 94:10116–10121

    CAS  PubMed  Google Scholar 

  6. Spicer AP, Joo A, Bowling RA Jr (2003) A hyaluronan binding link protein gene family whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links. J Biol Chem 278:21083–21091

    CAS  PubMed  Google Scholar 

  7. Rauch U (2004) Extracellular matrix components associated with remodeling processes in brain. Cell Mol Life Sci 61:2031–2045

    CAS  PubMed  Google Scholar 

  8. Bekku Y, Vargova L, Goto Y, Vorisek I, Dmytrenko L, Narasaki M, Ohtsuka A, Fassler R, Ninomiya Y, Sykova E, Oohashi T (2010) Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J Neurosci 30:3113–3123

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bekku Y, Saito M, Moser M, Fuchigami M, Maehara A, Nakayama M, Kusachi S, Ninomiya Y, Oohashi T (2012) Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. J Comp Neurol 520:1721–1736

    CAS  PubMed  Google Scholar 

  10. Cicanic M, Edamatsu M, Bekku Y, Vorisek I, Oohashi T, Vargova L (2018) A deficiency of the link protein Bral2 affects the size of the extracellular space in the thalamus of aged mice. J Neurosci Res 96:313–327

    CAS  PubMed  Google Scholar 

  11. Kwok JC, Carulli D, Fawcett JW (2010) In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem 114:1447–1459

    CAS  PubMed  Google Scholar 

  12. Oohashi T, Edamatsu M, Bekku Y, Carulli D (2015) The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity. Exp Neurol 274:134–144

    CAS  PubMed  Google Scholar 

  13. Galtrey CM, Kwok JC, Carulli D, Rhodes KE, Fawcett JW (2008) Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur J Neurosci 27:1373–1390

    PubMed  Google Scholar 

  14. Blue ME, Parnavelas JG (1983) The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J Neurocytol 12:697–712

    CAS  PubMed  Google Scholar 

  15. Fawcett JW, Oohashi T, Pizzorusso T (2019) The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 20:451–465

    CAS  PubMed  Google Scholar 

  16. Massey JM, Hubscher CH, Wagoner MR, Decker JA, Amps J, Silver J, Onifer SM (2006) Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci 26:4406–4414

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A, Forostyak S, Andrews MR, Deepa SS, Glant TT, Fawcett JW (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133:2331–2347

    PubMed  Google Scholar 

  18. Lendvai D, Morawski M, Negyessy L, Gati G, Jager C, Baksa G, Glasz T, Attems J, Tanila H, Arendt T, Harkany T, Alpar A (2013) Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease. Acta Neuropathol 125:215–229

    CAS  PubMed  Google Scholar 

  19. Zamecnik J, Homola A, Cicanic M, Kuncova K, Marusic P, Krsek P, Sykova E, Vargova L (2012) The extracellular matrix and diffusion barriers in focal cortical dysplasias. Eur J Neurosci 36:2017–2024

    PubMed  Google Scholar 

  20. Zamecnik J, Vargova L, Homola A, Kodet R, Sykova E (2004) Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol Appl Neurobiol 30:338–350

    CAS  PubMed  Google Scholar 

  21. Sykova E, Vorisek I, Mazel T, Antonova T, Schachner M (2005) Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur J Neurosci 22:1873–1880

    PubMed  Google Scholar 

  22. Sykova E, Mazel T, Hasenohrl RU, Harvey AR, Simonova Z, Mulders WH, Huston JP (2002) Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus 12:269–279

    CAS  PubMed  Google Scholar 

  23. Foscarin S, Raha-Chowdhury R, Fawcett JW, Kwok JCF (2017) Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging 9:1607–1622

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schneggenburger R, Forsythe ID (2006) The calyx of Held. Cell Tissue Res 326:311–337

    PubMed  Google Scholar 

  25. Blosa M, Sonntag M, Jager C, Weigel S, Seeger J, Frischknecht R, Seidenbecher CI, Matthews RT, Arendt T, Rubsamen R, Morawski M (2015) The extracellular matrix molecule brevican is an integral component of the machinery mediating fast synaptic transmission at the calyx of Held. J Physiol 593:4341–4360

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Beebe NL, Mellott JG, Schofield BR (2018) Inhibitory projections from the inferior colliculus to the medial geniculate body originate from four subtypes of GABAergic cells. eNeuro. https://doi.org/10.1523/ENEURO.0406-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol 321:225–257

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kriz N, Sykova E, Ujec E, Vyklicky L (1974) Changes of extracellular potassium concentration induced by neuronal activity in the sinal cord of the cat. J Physiol 238:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Voipio J, Pastrenack M, MacLeod K (1987) Ion-sensitive electrodes. In: Ogden D (ed) Microelectrodes techniques: the plymouth workshop handbook. The Company of Biologists Limited, Cambridge, pp 275–316

    Google Scholar 

  31. Nicholson C (1993) Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment. J Neurosci Methods 48:199–213

    CAS  PubMed  Google Scholar 

  32. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordi-nates. Academic Press, San Diego (CA)

    Google Scholar 

  33. Slaker ML, Harkness JH, Sorg BA (2016) A standardized and automated method of perineuronal net analysis using Wisteria floribunda agglutinin staining intensity. IBRO Rep 1:54–60

    PubMed  PubMed Central  Google Scholar 

  34. Foscarin S, Ponchione D, Pajaj E, Leto K, Gawlak M, Wilczynski GM, Rossi F, Carulli D (2011) Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PloS one 6:e16666

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li CH, Tam PKS (1998) An iterative algorithm for minimus cross entropy tresholding. Pattern Recogn Lett 19:771–776

    Google Scholar 

  36. Roitbak T, Sykova E (1999) Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28:40–48

    CAS  PubMed  Google Scholar 

  37. Sonntag M, Blosa M, Schmidt S, Rubsamen R, Morawski M (2015) Perineuronal nets in the auditory system. Hear Res 329:21–32

    PubMed  Google Scholar 

  38. Borst JG (2010) The low synaptic release probability in vivo. Trends in neurosciences 33:259–266

    CAS  PubMed  Google Scholar 

  39. Edamatsu M, Miyano R, Fujikawa A, Fujii F, Hori T, Sakaba T, Oohashi T (2018) Hapln4/Bral2 is a selective regulator for formation and transmission of GABAergic synapses between Purkinje and deep cerebellar nuclei neurons. J Neurochem 147:748–763

    CAS  PubMed  Google Scholar 

  40. Morales E, Fernandez FR, Sinclair S, Molineux ML, Mehaffey WH, Turner RW (2004) Releasing the peri-neuronal net to patch-clamp neurons in adult CNS. Pflug Arch 448:248–258

    CAS  Google Scholar 

  41. Rice ME, Okada YC, Nicholson C (1993) Anisotropic and heterogeneous diffusion in the turtle cerebellum: Implications for volume transmission. J Neurophysiol 70:2035–2044

    CAS  PubMed  Google Scholar 

  42. Albrecht O, Dondzillo A, Mayer F, Thompson JA, Klug A (2014) Inhibitory projections from the ventral nucleus of the trapezoid body to the medial nucleus of the trapezoid body in the mouse. Front Neural Circuits 8:83

    PubMed  PubMed Central  Google Scholar 

  43. Weinrich L, Sonntag M, Arendt T, Morawski M (2018) Neuroanatomical characterization of perineuronal net components in the human cochlear nucleus and superior olivary complex. Hear Res 367:32–47

    PubMed  Google Scholar 

  44. Morawski M, Dityatev A, Hartlage-Rubsamen M, Blosa M, Holzer M, Flach K, Pavlica S, Dityateva G, Grosche J, Bruckner G, Schachner M (2014) Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Philos Trans R Soc Lond B 369:20140046

    Google Scholar 

  45. Foster NL, Mellott JG, Schofield BR (2014) Perineuronal nets and GABAergic cells in the inferior colliculus of guinea pigs. Front Neuroanat 7:53

    PubMed  PubMed Central  Google Scholar 

  46. Rodriguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A (2016) Astrocytes in physiological aging and Alzheimer's disease. Neuroscience 323:170–182

    CAS  PubMed  Google Scholar 

  47. Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139:313–326

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xekardaki A, Kovari E, Gold G, Papadimitropoulou A, Giacobini E, Herrmann F, Giannakopoulos P, Bouras C (2015) Neuropathological changes in aging brain. Adv Exp Med Biol 821:11–17

    PubMed  Google Scholar 

  49. Sykova E, Mazel T, Simonova Z (1998) Diffusion constraints and neuron–glia interaction during aging. Exp Gerontol 33:837–851

    CAS  PubMed  Google Scholar 

  50. Grieve SM, Clark CR, Williams LM, Peduto AJ, Gordon E (2005) Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp 25:391–401

    PubMed  Google Scholar 

  51. Bruckner G, Hausen D, Hartig W, Drlicek M, Arendt T, Brauer K (1999) Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer's disease. Neuroscience 92:791–805

    CAS  PubMed  Google Scholar 

  52. Suttkus A, Morawski M, Arendt T (2016) Protective properties of neural extracellular matrix. Mol Neurobiol 53:73–82

    CAS  PubMed  Google Scholar 

  53. Popelar J, Diaz Gomez M, Lindovsky J, Rybalko N, Burianova J, Oohashi T, Syka J (2017) The absence of brain-specific link protein Bral2 in perineuronal nets hampers auditory temporal resolution and neural adaptation in mice. Physiol Res 66:867–880

    CAS  PubMed  Google Scholar 

  54. Reyes-Haro D, Muller J, Boresch M, Pivneva T, Benedetti B, Scheller A, Nolte C, Kettenmann H (2010) Neuron–astrocyte interactions in the medial nucleus of the trapezoid body. J General Physiol 135:583–594

    CAS  Google Scholar 

  55. Dmytrenko L, Cicanic M, Anderova M, Vorisek I, Ottersen OP, Sykova E, Vargova L (2013) The impact of alpha-syntrophin deletion on the changes in tissue structure and extracellular diffusion associated with cell swelling under physiological and pathological conditions. PLoS ONE 8:e68044

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Anderova M, Benesova J, Mikesova M, Dzamba D, Honsa P, Kriska J, Butenko O, Novosadova V, Valihrach L, Kubista M, Dmytrenko L, Cicanic M, Vargova L (2014) Altered astrocytic swelling in the cortex of alpha-syntrophin-negative GFAP/EGFP mice. PLoS ONE 9:e113444

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Czech Science Foundation (GACR) (Grant No. 16-10214S to LV) and a Grant-in-Aid for Scientific Research on Innovative Areas (Grant No. 19H04754 to TO) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. We wish to thank Fran Zatrepalkova for her useful comments and suggestions, Sophie Chowdhury for her contribution to diffusion measurements and Lenka Kohoutova for her excellent technical services. We also wish to thank Eva Sykova, who helped to initiate the collaboration of the Czech and Japanese teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Vargova.

Ethics declarations

Ethical Approval

All experiments were performed in accordance with the European Communities Council Directive 24 November 1986 (86/609/EEC), animal care guidelines approved by the Institute of Experimental Medicine, Academy of Science of the Czech Republic Animal Care Committee on the 17th April 2009; approval number 12/2013 and in accordance with the Policy on the Care and Use of the Laboratory Animals of Okayama University (Approval Number: OKU-2016045), approved by the Animal Care and Use Committee of Okayama University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue in honor of Prof Eva Sykova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sucha, P., Chmelova, M., Kamenicka, M. et al. The Effect of Hapln4 Link Protein Deficiency on Extracellular Space Diffusion Parameters and Perineuronal Nets in the Auditory System During Aging. Neurochem Res 45, 68–82 (2020). https://doi.org/10.1007/s11064-019-02894-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02894-2

Keywords

Navigation