Skip to main content

Advertisement

Log in

Changes of the aridity index in Europe from 1950 to 2019

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The aridity index, also known as the Budyko index, describes spatiotemporal changes in the hydroclimatic system in the long-term perspective. Defined as the ratio between potential evapotranspiration and precipitation, it can be used to determine wet (humid) and dry (arid) regions. In this study, we evaluated the aridity index estimated in different temporal scales, investigated its spatial patterns, and highlighted the long-term changes in Europe using three gridded data sets (CRU, E–OBS, and ERA5). A significant dry region expansion is evident in all data sets since the late 1980s. The extent of the dry regions has increased in Western, Central, and Eastern Europe, especially at low and medium altitudes. The results show the long-term development of the European hydroclimatic system and which areas have changed from wet to dry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan R, Pereira L, Smith M (1998) Crop evapotranspiration (guidelines for computing crop water requirements), FAO Irrigation and drainage paper 56. Food and Agriculture Organization

  • Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265(1):164–177

    Google Scholar 

  • Ault TR (2020) On the essentials of drought in a changing climate. Science 368(6488, SI):256–260

    Google Scholar 

  • Bandhauer M, Isotta F, Lakatos M, Lussana C, Baserud L, Izsak B, Szentes O, Tveito OE, Frei C (2022) Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions. Int J Climatol 42(2):727–747

    Google Scholar 

  • Barrow CJ (1992) World Atlas of Desertification (United Nations Environment Programme). Land Degradation & Development 3(4):249

    Google Scholar 

  • Bautista F, Bautista D, Delgado-Carranza C (2009) Calibration of the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications. Atmosfera 22(4):331–348

    Google Scholar 

  • Bell B, Hersbach H, Berrisford P, Dahlgren P, Horányi A, Muńoz Sabater J, Nicolas J, Radu R, Schepers D, Simmons A, Soci C, Thépaut J N (2020) ERA5 monthly averaged data on single levels from 1950 to 1978 (preliminary version). Copernicus Climate Change Service (C3S) Climate Data Store (CDS)

  • Birsan MV, Dumitrescu A (2014) ROCADA: Romanian daily gridded climatic dataset (1961-2013) V1.0

  • Blöschl G, Sivapalan M, Wagener T, Viglione A, Savenije H (2013) Runoff prediction in ungauged basins (synthesis across processes, places and scales). Cambridge University Press, United Kingdom

    Google Scholar 

  • Budyko MI (1974) Climate and Life. Academic Press, London

    Google Scholar 

  • Carmona AM, Poveda G, Sivapalan M, Vallejo-Bernal SM, Bustamante E (2016) A scaling approach to Budyko’s framework and the complementary relationship of evapotranspiration in humid environments: case study of the Amazon River basin. Hydrol Earth Syst Sci 20(2):589–603

    Google Scholar 

  • Chang X, Wang S, Gao Z, Luo Y, Chen H (2019) Forecast of daily reference evapotranspiration using a modified daily Thornthwaite Equation and temperature forecasts. Irrig Drain 68(2):297–317

    Google Scholar 

  • Cheval S, Dumitrescu A, Birsan M-V (2017) Variability of the aridity in the South-Eastern Europe over 1961-2050. Catena 151:74–86

    Google Scholar 

  • Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD (2018) An ensemble version of the E-OBS temperature and precipitation data sets. J Gerontol Ser A Biol Med Sci 123(17):9391–9409

    Google Scholar 

  • Creed IF, Spargo AT, Jones JA, Buttle JM, Adams MB, Beall FD, Booth EG, Campbell JL, Clow D, Elder K, Green MB, Grimm NB, Miniat C, Ramlal P, Saha A, Sebestyen S, Spittlehouse D, Sterling S, Williams MW, Winkler R, Yao H (2014) Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America. Global Change Biol 20(10):3191–3208

    Google Scholar 

  • Dai A (2011) Drought under global warming: a review. WIREs Clim Change 2(1):45–65

    Google Scholar 

  • Diaz-Padilla G, Sanchez-Cohen I, Guajardo-Panes RA, Del Angel-Perez AL, Ruiz-Corral A, Medina-Garcia G, Ibarra-Castillo D (2011) Mapping of the aridity index and its polulation distribution in Mexico. Revista CHapingo Serire Ciencias Forestales y Del Ambiente 17(SI):267–275

    Google Scholar 

  • Duan Z, Chen Q, Chen C, Liu J, Gao H, Song X, Wei M (2019) Spatiotemporal analysis of nonlinear trends in precipitation over Germany during 1951-2013 from multiple observation-based gridded products. Int J Climatol 39(4):2120–2135

    Google Scholar 

  • Fibbi L, Chiesi M, Moriondo M, Bindi M, Chirici G, Papale D, Gozzini B, Maselli F (2016) Correction of a 1 km daily rainfall dataset for modelling forest ecosystem processes in Italy. Meteorol Applications 23:294–303

    Google Scholar 

  • Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global Planet Change 62(3-4):195–209

    Google Scholar 

  • Gardelin M, Lindstrom G (1997) Priestley-Taylor evapotranspiration in HBV-simulations. Nordic Hydrol 28(4-5):233–246

    Google Scholar 

  • Gerrits AMJ, Savenije HHG, Veling EJM, Pfister L (2009) Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resour Res 45(4):W04403, 1–15

    Google Scholar 

  • Hanel M, Rakovec O, Markonis Y, Maca P, Samaniego L, Kysely J, Kumar R (2018) Revisiting the recent European droughts from a long-term perspective. Sci Rep 8:9499, 1–11

    Google Scholar 

  • Hargreaves G, Samani Z (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):1–12

    Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int J Climatol 34(3):623–642

    Google Scholar 

  • Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scient Data 7(1):109, 1–18

    Google Scholar 

  • Hassler B, Lauer A (2021) Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere 12(11):1462, 1–30

    Google Scholar 

  • Herrera S, Gutiérrez JM, Ancell R, Pons MR, Frías MD, Fernández J (2012) Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32(1):74–85

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I, Schepers D, Simmons A, Soci C, Dee D, Thépaut J N (2018) ERA5 monthly averaged data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.f17050d7HijmansRJ(2021) raster:Geographicdataanalysisandmodeling.Rpackageversion3.5-2.https://CRAN.R-project.org/package=raster

  • HofstraN,HaylockM,NewM,JonesPD(2009)TestingE-OBSEuropeanhigh-resolutiongriddeddata setofdailyprecipitationandsurfacetemperature.JGerontolSerABiolMedSci 114:D21101,1–16

    Google Scholar 

  • HuangJ,JiM,XieY,WangS,HeY,RanJ(2016)Globalsemi-aridclimatechangeoverlast60 years.ClimDyn 46(3-4):1131–1150

    Google Scholar 

  • HugueninMF,FischerEM,KotlarskiS,ScherrerSC,SchwierzC,KnuttiR(2020)Lackofchangein theprojectedfrequencyandpersistenceofatmosphericcirculationtypesoverCentralEurope.Geophys ResLett 47(9):e2019GL086132,1–10

    Google Scholar 

  • IsottaFA,VogelR,FreiC(2015)EvaluationofEuropeanregionalreanalysesanddownscalingsfor precipitationintheAlpineregion.MeteorologischeZeitschift 24(1):15–37

    Google Scholar 

  • KeyantashJA,DracupJA(2004)Anaggregatedroughtindex:assessingdroughtseveritybasedonfluctuations inthehydrologiccycleandsurfacewaterstorage.WaterResourRes 40(9):W09304,1–13

    Google Scholar 

  • KohliG,LeeCM,FisherJB,HalversonG,VarianoE,JinY,CarneyD,WilderBA,Kinoshita AM(2020)ECOSTRESSandCIMIS:Acomparisonofpotentialandreferenceevapotranspirationinriversidecounty, California.RemoteSensing 12(24):4126,1–12

    Google Scholar 

  • KucerovaM,BeckC,PhilippA,HuthR(2017)Trendsinfrequencyandpersistenceofatmospheric circulationtypesoverEuropederivedfromamultitudeofclassifications.IntJClimatol 37(5):2502–2521

    Google Scholar 

  • LaitiL,MallucciS,PiccolroazS,BellinA,ZardiD,FioriA,NikulinG,MajoneB(2018)Testing thehydrologicalcoherenceofhigh-resolutiongriddedprecipitationandtemperaturedatasets.Water ResourRes 54(3):1999–2016

    Google Scholar 

  • LakatosM,WeidingerT,HoffmannL,BihariZ,HorvathA(2020)Computationofdaily Penman-MonteithreferenceevapotranspirationintheCarpathianRegionandcomparisonwithThornthwaiteestimates. AdvSciRes 16:251–259

    Google Scholar 

  • LangD,ZhengJ,ShiJ,LiaoF,MaX,WangW,ChenX,ZhangM(2017)Acomparative studyofpotentialevapotranspirationestimationbyeightmethodswithFAOPenman-Monteithmethodinsouthwestern China.Water 9(10):734,1–18

    Google Scholar 

  • LhotkaO,TrnkaM,KyselyJ,MarkonisY,BalekJ,MoznyM(2020)Atmosphericcirculationas afactorcontributingtoincreasingdroughtseverityinCentralEurope.JGerontolSerABiolMedSci 125(18):e2019JD032269,1–17

    Google Scholar 

  • LioubimtsevaE,ColeR,AdamsJM,KapustinG(2005)Impactsofclimateandland-coverchangesin aridlandsofcentralAsia.JAridEnviron 62(2):285–308

    Google Scholar 

  • LiuJ,XuS,HanX,ChenX,HeR(2019)Amulti-dimensionalhydro-climaticsimilarityand classificationframeworkbasedonBudykotheoryforcontinental-scaleapplicationsinChina.Water 11 (2):319,1–26

    Google Scholar 

  • MarkonisY,KumarR,HanelM,RakovecO,MacaP,AghaKouchakA(2021)Theriseof compoundwarm-seasondroughtsinEurope.SciAdv 7(6):eabb9668,1–7

    Google Scholar 

  • MoravecV,MarkonisY,RakovecO,SvobodaM,TrnkaM,KumarR,HanelM(2021) Europeundermulti-yeardroughts:howseverewasthe20142018droughtperiod?.EnvironResLett 16 (3):034062,1–13

    Google Scholar 

  • MyronidisD,NikolaosT(2021)Changesinclimaticpatternsandtourismandtheirconcomitanteffectondrinking watertransfersintotheregionofSouthAegean,Greece.StochEnvResRiskAssess 35:1725–1739

    Google Scholar 

  • NaumannG,CammalleriC,MentaschiL,FeyenL(2021)IncreasedeconomicdroughtimpactsinEurope withanthropogenicwarming.NatClimChang 11(6):485–491

    Google Scholar 

  • NavarroA,Garcia-OrtegaE,MerinoA,Luis SanchezJ,KummerowC,TapiadorFJ(2019) AssessmentofIMERGprecipitationestimatesoverEurope.RemoteSens 11(21):2470,1–17

    Google Scholar 

  • NechitaC,ČufarK,MacoveiI,PopaI,BadeaON(2019)Testingthreeclimatedatasetsfor dendroclimatologicalstudiesofoaksintheSouthCarpathians.SciTotalEnviron 694:133730,1–10

    Google Scholar 

  • NymanP,SherwinCB,LanghansC,LanePNJ,SheridanGJ(2014)Downscalingregionalclimate datatocalculatetheradiativeindexofdrynessincomplexterrain.AustMeteorolOceanographicJ 64 (2):109–122

    Google Scholar 

  • OudinL,HervieuF,MichelC,PerrinC,AndreassianV,AnctilF,LoumagneC(2005)Which potentialevapotranspirationinputforalumpedrainfall-runoffmodel? Part2Towardsasimpleandefficientpotential evapotranspirationmodelforrainfall-runoffmodelling.JHydrol 303(1-4):290–306

    Google Scholar 

  • PaltineanuC,MihailescuIF,SeceleanuI,DragotaC,VasenciucF(2007)Usingaridityindices todescribesomeclimateandsoilfeaturesinEasternEurope:aRomaniancasestudy.TheoretAppl Climatol 90(3-4):263–274

    Google Scholar 

  • PanN,WangS,LiuY,LiY,XueF,WeiF,YuH,FuB(2021)Rapidincrease ofpotentialevapotranspirationweakenstheeffectofprecipitationonaridityinglobaldrylands.JArid Environ 186:104414,1–9

    Google Scholar 

  • PengL,LiY,FengH(2017)Thebestalternativeforestimatingreferencecropevapotranspirationin differentsub-regionsofmainlandChina.ScientReports 7:5458,1–19

    Google Scholar 

  • PereiraAR,PruittWO(2004)AdaptationoftheThornthwaiteschemeforestimatingdailyreference evapotranspiration.AgriculturalWaterManagement 66(3):251–257

    Google Scholar 

  • PoyenFB,GhoshAK,KunduP(2016)Reviewondifferentevapotranspirationempiricalequations. IntJAdvEngManagSci 2:17–24

    Google Scholar 

  • PravalieR,BandocG(2015)AridityvariabilityinthelastfivedecadesintheDobrogeaRegion,Romania. AridLandResManag 29(3):265–287

    Google Scholar 

  • RCoreTeam(2021)R:alanguageandenvironmentforstatisticalcomputing.RFoundationforStatistical Computing,Vienna,Austria.https://www.R-project.org/

  • RakovecO,SamaniegoL,HariV,MarkonisY,MoravecV,ThoberS,HanelM,KumarR(2022) The2018-2020multi-yeardroughtsetsanewbenchmarkinEurope.EarthsFuture 10(3):e2021EF002394, 1–11

    Google Scholar 

  • RehorJ,BrazdilR,TrnkaM,LhotkaO,BalekJ,MoznyM,StepanekP,ZahradnicekP, MikulovaK,TurnaM(2021)SoildroughtandcirculationtypesinalongitudinaltransectovercentralEurope. IntJClimatol 41(1):E2834–E2850

    Google Scholar 

  • RolleM,TameaS,ClapsP(2021)ERA5-basedglobalassessmentofirrigationrequirementandvalidation. PlosOne 16(4):e0250979,1–21

    Google Scholar 

  • SalvatiL,SaterianoA,ZittiM(2013)Long-termlandcoverchangesandclimatevariations—acountry-scale approachforanewpolicytarget.LandUsePolicy 30:401–407

    Google Scholar 

  • SamaniZ(2000)Estimatingsolarradiationandevapotranspirationusingminimumclimatologicaldata. JIrrigDrainEng 126(4):265–267

    Google Scholar 

  • SanchezE,RomeraR,GaertnerMA,GallardoC,CastroM(2009)Aweightingproposalforanensemble ofregionalclimatemodelsoverEuropedrivenby1961-2000ERA40basedonmonthlyprecipitationprobabilitydensity functions.AtmosSciLett 10(4):241–248

    Google Scholar 

  • SarbuI,SebarchieviciC(2017) Solarheatingandcoolingsystems(fundamentals,experimentsand applications). AcademicPress,London

    Google Scholar 

  • SeillerG,AnctilF(2016)Howdopotentialevapotranspirationformulasinfluencehydrologicalprojections?. HydrolSciJ 61(12):2249–2266

    Google Scholar 

  • SentelhasPC,GillespieTJ,SantosEA(2010)EvaluationofFAOPenman-Monteithandalternativemethods forestimatingreferenceevapotranspirationwithmissingdatainSouthernOntario,Canada.AgriWater Manag 97(5):635–644

    Google Scholar 

  • SficaL,BeckC,NitaA-I,VoiculescuM,BirsanM-V,PhilippA(2021)Cloudcoverchangesdriven byatmosphericcirculationinEuropeduringthelastdecades.InternationalJournalofClimatology 41 (1):E2211–E2230

    Google Scholar 

  • SkokG,ZagarN,HonzakL,ZabkarR,RakovecJ,CeglarA(2016)Precipitationintercomparisonof asetofsatellite-andraingauge-deriveddatasets,ERAInterimreanalysis,andasingleWRFregionalclimatesimulation overEuropeandtheNorthAtlantic.TheoreticalandAppliedClimatology 123(1-2):217–232

    Google Scholar 

  • SpinoniJ,VogtJ,NaumannG,CarraoH,BarbosaP(2015)Towardsidentifyingareasatclimatological riskofdesertificationusingtheKoppen-GeigerclassificationandFAOaridityindex.InternJClimatol 35(9):2210–2222

    Google Scholar 

  • TabariH(2010)Evaluationofreferencecropevapotranspirationequationsinvariousclimates.Water ResourManage 24(10):2311–2337

    Google Scholar 

  • TapiadorFJ,SanchezE(2008)ChangesintheEuropeanprecipitationclimatologiesasderivedbyanensemble ofregionalmodels.JClimate 21(11):2540–2557

    Google Scholar 

  • TegosA,MalamosN,KoutsoyiannisD(2015)Aparsimoniousregionalparametricevapotranspiration modelbasedonasimplificationofthePenman-Monteithformula.JHydrol 524:708–717

    Google Scholar 

  • TomczykAM,BednorzE,PolrolniczakM(2019)TheoccurrenceofheatwavesinEuropeandtheir circulationconditions.Geografie 124(1):1–17

    Google Scholar 

  • vanderSchrierG,vandenBesselaarEJM,TankAMGK,VerverG(2013)MonitoringEuropeanaverage temperaturebasedontheE-OBSgriddeddataset.JGerontolSerABiolMedSci 118(11):5120–5135

    Google Scholar 

  • VanLoonAF(2015)Hydrologicaldroughtexplained.WileyInterdisciplinaryReviews-Water 2 (4):359–392

    Google Scholar 

  • VelikouK,LazoglouG,TolikaK,AnagnostopoulouC(2022)ReliabilityoftheERA5inreplicating meanandextremetemperaturesacrossEurope.Water 14(4):543,1–15

    Google Scholar 

  • WaldL(2018)BasicsinsolarradiationatEarthsurface.https://www.researchgate.net/publication/322314967

  • WangD,AlimohammadiN(2012)Responsesofannualrunoff,evaporation,andstoragechangetoclimate variabilityatthewatershedscale.WaterResourRes 48(5):W05546,1–16

    Google Scholar 

  • WeilandFCS,TisseuilC,DurrHH,VracM,vanBeekLPH(2012)Selectingtheoptimalmethodto calculatedailyglobalreferencepotentialevaporationfromCFSRreanalysisdataforapplicationinahydrologicalmodel study.HydrolEarthSystSci 16(3):983–1000

    Google Scholar 

  • WickhamH(2016)ggplot2:Elegantgraphicsfordataanalysis.Springer-VerlagNewYork.https://ggplot2.tidyverse.org

  • WilhiteDA(2000) Droughts:aglobalassessment,Chapter1:DroughtasaNaturalHazard:Conceptsand Definitions. Routledge,London

    Google Scholar 

  • WinterTC,RosenberryDO,SturrockAM(1995)Evaluationof11equationsfordetermining evapotranspirationforasmalllakeintheNorthCentralUnited-States.WaterResourRes 31(4):983–993

    Google Scholar 

  • XiangK,LiY,HortonR,FengH(2020)Similarityanddifferenceofpotentialevapotranspirationand referencecropevapotranspiration-areview.AgricWaterManag 232:106043,1–16

    Google Scholar 

  • XuCY,SinghVP(2000)Evaluationandgeneralizationofradiation-basedmethodsforcalculatingevaporation. HydrolProcess 14(2):339–349

    Google Scholar 

  • XuJ,PengS,DingJ,WeiQ,YuY(2013)Evaluationandcalibrationofsimplemethodsfordaily referenceevapotranspirationestimationinhumidEastChina.ArchievesofAgronomyandSoilScience 59(6):845–858

    Google Scholar 

  • ZhaoH,PanX,WangZ,JiangS,LiangL,WangX,WangX(2019)Whatwerethechanging trendsoftheseasonalandannualaridityindexesinnorthwesternChinaduring1961-2015?.Atmospheric Res 222:154–162

    Google Scholar 

  • ZhengH,ZhangL,ZhuR,LiuC,SatoY,FukushimaY(2009)Responsesofstreamflowtoclimate andlandsurfacechangeintheheadwatersoftheYellowRiverBasin.WaterResRes 45(7):W00A19, 1–9

    Google Scholar 

  • ZhouS,YuB,HuangY,WangG(2015)ThecomplementaryrelationshipandgenerationoftheBudyko functions.GeophysResLett 42(6):1781–1790

    Google Scholar 

  • ZveryaevII,GulevSK(2009)SeasonalityinsecularchangesandinterannualvariabilityofEuropeanair temperatureduringthetwentiethcentury.JGeophysRes-Atm 114:D02110,1–14

    Google Scholar 

  • ZveryaevII(2004)SeasonalityinprecipitationvariabilityoverEurope.JGerontolSerABiolMed Sci 109(D5):D05103,1–16

    Google Scholar 

Download references

Acknowledgements

We acknowledge E–OBS from the EU-FP6 project UERRA, the Copernicus Climate Change Service and Climate Data Store, and the data providers in the ECA&D project, the Climatic Research Unit, and ECMWF.

Funding

The study was supported by the Czech Science Foundation, project 20-28560S (“Driving mechanisms of extremes in reanalysis and climate models”). ZB was also supported within student project “Conditional probabilities of transition from arid to humid environment and vice versa in Europe during the period 1766–2015” by the Internal Grant Agency of the Faculty of Environmental Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Bešt́áková.

Ethics declarations

Ethics approval

The authors have agreed for authorship, read and approved the manuscript, and given consent for submission and subsequent publication of the manuscript.

Consent for publication

All authors read the manuscript and agree for the publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Author contribution

ZB, PM, JK: conceptualization, review, and editing. ZB: writing—original draft, data processing, visualization. FS: visualization review and editing. MV, US, YM, MH: review and editing.

Data availability

The data sets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Consent to participate

All authors consent to participate in the present study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bešt́áková, Z., Strnad, F., Vargas Godoy, M.R. et al. Changes of the aridity index in Europe from 1950 to 2019. Theor Appl Climatol 151, 587–601 (2023). https://doi.org/10.1007/s00704-022-04266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-022-04266-3

Keywords

Navigation