Skip to main content
Log in

A new rodent species of the genus Mus (Rodentia: Muridae) confirms the biogeographical uniqueness of the isolated forests of southern Ethiopia

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The Ethiopian highlands represent the largest part of the Eastern Afromontane Biodiversity Hotspot (EAMBH). Their fauna and flora are largely unique. Particularly, Afroalpine habitats on isolated mountains are known to harbour a large number of highly specialized endemic species. In contrast to intensively studied Afroalpine ecosystems, the forests in southern and southwestern parts of the Ethiopian highlands remain neglected in terms of biodiversity research, even though they represent the only remaining natural large-scale forests in this part of EAMBH. Here, we performed an integrative taxonomic revision (combining multi-locus phylogenetic analysis with classical and geometric morphometrics) and analysis of the evolutionary history of ancient lineages of the genus Mus, with a special focus on the taxon discovered in moist Ethiopian forests. We unequivocally showed that this taxon forms a very distinct gene pool separated from other taxa by the mid-Pliocene, substantially differentiated from both sympatric and sister species by external and cranial morphology. None of the available type specimens (including synonym types) can be unambiguously classified to this taxon according to both skull and body form. Therefore, we describe it as a new mammal species, narrowly endemic to two most humid forests in southern (Harenna) and southwestern (Chingawa) part of the Ethiopian highlands. The description of such paleo-endemic taxa will add incentives to embark on urgent conservation action for formal protection of these unique forests within the EAMBH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

GPS of localities, museum voucher numbers, GenBank Accession numbers and other details about specimens included in analyses are provided in Supplementary Information 1 (XLS file with five sheets with Tables S1S5). New DNA sequences were uploaded to GenBank and their accession numbers (OL616297-OL616433) are in Supplementary Information 1.

Code availability

Not applicable.

References

  • Addi, A., Soromessa, T., & Bareke, T. (2020). Plant diversity and community analysis of Gesha and Sayilem Forest in Kaffa Zone, southwestern Ethiopia. Biodiversitas 21, 2878–2888. https://doi.org/10.13057/biodiv/d210702

  • Aniskin, V. M., Lavrenchenko, L. A., Varshavskii, A. A., & Milishnikov, A. N. (1998). Karyotypes and cytogenetic differentiation of two African mouse species of genus Mus (Rodentia, Muridae). Russian Journal of Genetics, 34(1), 80–85.

    CAS  Google Scholar 

  • Bannikova, A. A., Zemlemerova,  E. D., Lebedev, V. S., & Lavrenchenko, L. A. (2021). The phylogenetic relationships within the Eastern Afromontane clade of Crocidura based on mitochondrial and nuclear data. Mammalian Biology, 1–14. https://doi.org/10.1007/s42991-021-00120-7

  • Birhan, M. W., & Tariku S. (2021) Investigating the impact of space weather on agriculture products over Chokie mountain basin in Ethiopia. Acta Geophysica, 1–11. https://doi.org/10.1007/s11600-021-00610-9

  • Bookstein, F. L. (1997). Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis, 1(3), 225–243. https://doi.org/10.1016/S1361-8415(97)85012-8

    Article  CAS  PubMed  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryja, J., Kostin, D., Meheretu, Y., Šumbera, R., Bryjová, A., Kasso, M., Mikula, O., & Lavrenchenko, L. A. (2018). Reticulate Pleistocene evolution of Ethiopian rodent genus along remarkable altitudinal gradient. Molecular Phylogenetics and Evolution, 118, 75–87. https://doi.org/10.1016/j.ympev.2017.09.020

    Article  PubMed  Google Scholar 

  • Bryja, J., Meheretu, Y., Šumbera, R., & Lavrenchenko, L. A. (2019). Annotated checklist, taxonomy and distribution of rodents in Ethiopia. Folia Zoologica, 68(3), 117–213. https://doi.org/10.25225/fozo.030.2019

  • Bryja, J., Mikula, O., Šumbera, R., Meheretu, Y., Aghová, T., Lavrenchenko, L. A., Mazoch, V., Oguge, N., Mbau, J. S., Welegerima, K., Amundala, N., Colyn, M., Leirs, H., & Verheyen, E. (2014). Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. BMC Evolutionary Biology, 14(1), 1–20. https://doi.org/10.1186/s12862-014-0256-2

    Article  Google Scholar 

  • Burnham, K. P., & Anderson, D. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag.

  • BZADD (1999). Impact of encroachment on biodiversity of Harenna forest with particular reference to Sawmill logging. Bale Zone Agriculture Development Department (BZADD), Bale (mimeographed report).

  • Cuypers, L. N., Sabuni, C., Šumbera, R., Aghová, T., Lišková, E., Leirs, H., Baird, S. J. E., Goüy de Bellocq, J., & Bryja J. (2022). Biogeographical importance of the Livingstone Mountains in southern Tanzania: Comparative genetic structure of small non-volant mammals. Frontiers in Ecology and Evolution, 9, 742851. https://doi.org/10.3389/fevo.2021.742851

  • Dagallier, L. P. M., Janssens, S. B., Dauby, G., Blach-Overgaard, A., Mackinder, B. A., Droissart, V., Svenning, J. C., Sosef, M. S. M., Stévart, T., Harris, D. J., Sonké, B., Wieringa, J. J., Hardy, O. J., & Couvreur, T. L. (2020). Cradles and museums of generic plant diversity across tropical Africa. New Phytologist, 225(5), 2196–2213. https://doi.org/10.1111/nph.16293

    Article  PubMed  Google Scholar 

  • Drummond, A. J., & Bouckaert, R. R. (2015). Bayesian evolutionary analysis with BEAST. Cambridge University Press.

    Book  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (2016). Statistical shape analysis: with applications in R (Vol. 995). John Wiley & Sons.

  • EFAP. (1994). The Challenges for Development, Volume 2. Ministry of Natural Resources Development and Environmental Protection EFAP Secretariat, Addis Ababa.

  • Fernandes, C. A., Rohling, E. J., & Siddall, M. (2006). Absence of post-Miocene Red Sea land bridges: Biogeographic implications. Journal of Biogeography, 33, 961–966. https://doi.org/10.1111/j.1365-2699.2006.01478.x

    Article  Google Scholar 

  • Fishpool, L. D., & Evans, M. I. (Eds.) (2001). Important Bird Areas in Africa and associated islands: Priority sites for conservation. BirdLife International.

  • Freilich, X., Anadón, J. D., Bukala, J., Calderon, O., Chakraborty, R., & Boissinot, S. (2016). Comparative Phylogeography of Ethiopian anurans: Impact of the Great Rift Valley and Pleistocene climate change. BMC Evolutionary Biology, 16(1), 1–19. https://doi.org/10.1186/s12862-016-0774-1

    Article  Google Scholar 

  • Freilich, X., Tollis, M., & Boissinot, S. (2014). Hiding in the highlands: Evolution of a frog species complex of the genus Ptychadena in the Ethiopian highlands. Molecular Phylogenetics and Evolution, 71, 157–169. https://doi.org/10.1016/j.ympev.2013.11.015

    Article  PubMed  Google Scholar 

  • Friis, I. B., Demissew, S., & Breugel, P. V. (2010). Atlas of the potential vegetation of Ethiopia. Det Kongelige Danske Videnskabernes Selskab.

  • Gernhard, T. (2008). The conditioned reconstructed process. Journal of Theoretical Biology, 253(4), 769–778. https://doi.org/10.1016/j.jtbi.2008.04.005

    Article  PubMed  Google Scholar 

  • Goutte, S., Reyes-Velasco, J., & Boissinot, S. (2019). A new species of puddle frog from an unexplored mountain in southwestern Ethiopia (Anura, Phrynobatrachidae, Phrynobatrachus). ZooKeys, 824, 53–70. https://doi.org/10.3897/zookeys.824.31570

    Article  Google Scholar 

  • Gower, D. J., Wade, E. O., Spawls, S., Böhme, W., Buechley, E. R., Sykes, D., & Colston, T. J. (2016). A new large species of Bitis Gray, 1842 (Serpentes: Viperidae) from the Bale Mountains of Ethiopia. Zootaxa4093(1), 41–63. https://doi.org/10.11646/zootaxa.4093.1.3

  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711–732. https://doi.org/10.1093/biomet/82.4.711

    Article  Google Scholar 

  • Herkt, K. M. B., Barnikel, G., Skidmore, A. K., & Fahr, J. (2016). A high-resolution model of bat diversity and endemism for continental Africa. Ecological Modelling, 320, 9–28. https://doi.org/10.1016/j.ecolmodel.2015.09.009

    Article  Google Scholar 

  • Hey, J., & Nielsen, R. (2007). Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proceedings of the National Academy of Sciences, 104(8), 2785–2790. https://doi.org/10.1073/pnas.0611164104

    Article  CAS  Google Scholar 

  • Höhna, S., Landis, M. J., Heath, T. A., Boussau, B., Lartillot, N., Moore, B. R., Huelsenbeck, J. P., & Ronquist, F. (2016). RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Systematic Biology, 65(4), 726–736. https://doi.org/10.1093/sysbio/syw021https://doi.org/10.32614/RJ-2016-021

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson, N. D., Carstens, B. C., Morales, A. E., & O’Meara, B. C. (2017). Species delimitation with gene flow. Systematic Biology, 66(5), 799–812. https://doi.org/10.1093/sysbio/syw117

    Article  PubMed  Google Scholar 

  • Jones, G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology, 74(1–2), 447–467. https://doi.org/10.1007/s00285-016-1034-0

    Article  PubMed  Google Scholar 

  • Jones, G., Aydin, Z., & Oxelman, B. (2015). DISSECT: An assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics, 31(7), 991–998. https://doi.org/10.1093/bioinformatics/btu770

    Article  CAS  PubMed  Google Scholar 

  • Jotterand, M. (1972). Le polymorphisme chromosomique des Mus Leggadas africains: Cytogénétique, zoogéographie, évolution. Revue Suisse De Zoologie, 79(11), 287–359.

    Article  CAS  Google Scholar 

  • Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630–1638. https://doi.org/10.1093/bioinformatics/btx025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572

    Article  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  • Kittelberger, K. D., Neate-Clegg, M. H., Buechley, E. R., & Hakkı Şekercioğlu, Ç. (2021). Community characteristics of forest understory birds along an elevational gradient in the Horn of Africa: A multi-year baseline. The Condor, 123(2), duab009. https://doi.org/10.1093/ornithapp/duab009

  • Klecka, W. R. (1980). Discriminant analysis: quantitative applications in the social sciences. Sage Publications.

  • Komarova, V. A., Kostin, D. S., Bryja, J., Mikula, O., Bryjová, A., Čížková, D., Šumbera, R., Meheretu, Y., & Lavrenchenko, L. A. (2021). Complex reticulate evolution of speckled brush-furred rats (Lophuromys) in the Ethiopian centre of endemism. Molecular Ecology, 30(10), 2349–2365. https://doi.org/10.1111/mec.15891

    Article  PubMed  Google Scholar 

  • Konečný, A., Hutterer, R., Meheretu, Y., & Bryja, J. (2020). Two new species of Crocidura (Mammalia: Soricidae) from Ethiopia and updates on the Ethiopian shrew fauna. Journal of Vertebrate Biology69(2), 20064. https://doi.org/10.25225/jvb.20064

  • Krásová, J., Mikula, O., Bryja, J., Baptista, N. L., António, T., Aghová, T., & Šumbera, R. (2021). Biogeography of Angolan rodents: The first glimpse based on phylogenetic evidence. Diversity and Distributions, 27, 2571–2583. https://doi.org/10.1111/ddi.13435

    Article  Google Scholar 

  • Krásová, J., Mikula, O., Mazoch, V., Bryja, J., Říčan, O., & Šumbera, R. (2019). Evolution of the Grey-bellied pygmy mouse group: Highly structured molecular diversity with predictable geographic ranges but morphological crypsis. Molecular Phylogenetics and Evolution, 130, 143–155. https://doi.org/10.1016/j.ympev.2018.10.016

    Article  PubMed  Google Scholar 

  • Kronmann, K. C., Nimo-Paintsil, S., Guirguis, F., Kronmann, L. C., Bonney, K., Obiri-Danso, K., Ampofo, W., & Fichet-Calvet, E. (2013). Two novel arenaviruses detected in pygmy mice. Ghana. Emerging Infectious Diseases, 19(11), 1832. https://doi.org/10.3201/eid1911.121491

    Article  PubMed  Google Scholar 

  • Largen, M. J. (1997). An annotated checklist of the amphibians and reptiles of Eritrea, with keys for their identification. Tropical Zoology, 10, 63–115. https://doi.org/10.1080/03946975.1997.10539328

    Article  Google Scholar 

  • Largen, M. J., & Drewes, R. C. (1989). A new genus and species of brevicipitine frog (Amphibia, Anura, Microhylidae) from high altitude in the mountains of Ethiopia. Tropical Zoology, 2, 13–30. https://doi.org/10.1080/03946975.1989.10539423

    Article  Google Scholar 

  • Largen, M., & Spawls, M. S. (2011). Amphibians and reptiles recorded from the Bale mountains. Walia, 2011(Special), 89–91.

  • Lavrenchenko, L. A. (2000). The mammals of the isolated Harenna Forest (southern Ethiopia): structure and history of the fauna. In G. Rheinwald (Ed.), Isolated Vertebrate Communities in the Tropics (46, pp. 223–231).

  • Lavrenchenko, L. A., & Bekele, A. (2017). Diversity and conservation of Ethiopian mammals: What have we learned in 30 years? Ethiopian Journal of Biological Sciences, 16(1), 1–20.

    Google Scholar 

  • Lillesø, J.-P. B., van Breugel, P., Kindt, R., Bingham, M., Demissew, S., Dudley, C., ... Graudal, L. O. V. (2011). Potential natural vegetation of Eastern Africa (Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda and Zambia): Volume 1: The atlas. Forest & Landscape Working Papers 61, bind 1. Forest & Landscape, University of Copenhagen.

  • Leaché, A. D., Zhu, T., Rannala, B., & Yang, Z. (2019). The spectre of too many species. Systematic Biology, 68(1), 168–181. https://doi.org/10.1093/sysbio/syy051

    Article  PubMed  Google Scholar 

  • Legese, K., Bekele, A., & Kiros, S. (2019). A survey of large and medium‐sized mammals in Wabe forest fragments, Gurage zone, Ethiopia. International Journal of Avian & Wildlife Biology4(2), 32–38. https://doi.org/10.15406/ijawb.2019.04.00149

  • Louchart, A., Wesselman, H., Blumenschine, R. J., Hlusko, L. J., Njau, J. K., Black, M. T., Asnake, M., & White, T. D. (2009). Taphonomic, avian, and small-vertebrate indicators of Ardipithecus ramidus habitat. Science326(5949), 66–66e4. https://doi.org/10.1126/science.1175823

  • Mairal, M., Sanmartín, I., Herrero, A., Pokorny, L., Vargas, P., Aldasoro, J. J., & Alarcón, M. (2017). Geographic barriers and Pleistocene climate change shaped patterns of genetic variation in the Eastern Afromontane biodiversity hotspot. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep45749

    Article  CAS  Google Scholar 

  • Manthi, F. K. (2007). A preliminary review of the rodent fauna from Lemudong’o, southwestern Kenya, and its implication to the late Miocene paleoenvironments. Kirtlandia, 56, 92–105.

    Google Scholar 

  • Manthi, F. K., & Winkler, A. J. (2020). Rodents and other terrestrial small mammals from Kanapoi, north-western Kenya. Journal of Human Evolution, 140, 102694. https://doi.org/10.1016/j.jhevol.2019.102694

    Article  PubMed  Google Scholar 

  • Meheretu, Y., Meinig, H., Mikula, O., Hermes, N., Wale, M., Tadele, A., Kaipf, I., & Bryja J. (2022). Small- and medium-sized mammals of the Kafa Biosphere Reserve, Ethiopia. African Journal of Ecology, available online. https://doi.org/10.1111/aje.12961

  • Mein, P., & Pickford, M. (2006). Late Miocene micromammals from the Lukeino formation (6.1 to 5.8 ma), Kenya. Publications de la Société Linnéenne de Lyon, 75(4), 183–223. https://doi.org/10.3406/linly.2006.13628

  • Mishler, B. D., Knerr, N., González-Orozco, C. E., Thornhill, A. H., Laffan, S. W., & Miller, J. T. (2014). Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nature Communications, 5(1), 1–10. https://doi.org/10.1038/ncomms5473

    Article  CAS  Google Scholar 

  • Mittermeier, R. A., Gil, P. R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., & Da Fonseca, G. A. B. (2004). Hotspots revisited: Earth’s biologically richest and most threatened ecoregions. Cemex.

  • Mitteroecker, P., & Bookstein, F. (2011). Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology, 38(1), 100–114. https://doi.org/10.1007/s11692-011-9109-8

    Article  Google Scholar 

  • Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46(6), 679–698. https://doi.org/10.1016/j.jhevol.2004.03.006

    Article  PubMed  Google Scholar 

  • Mizerovská, D., Mikula, O., Meheretu, Y., Bartáková, V., Bryjová, A., Kostin, D. S., Šumbera, R., Lavrenchenko, L. A., & Bryja, J. (2020). Integrative taxonomic revision of the Ethiopian endemic rodent genus Stenocephalemys (Muridae: Murinae: Praomyini) with the description of two new species. Journal of Vertebrate Biology69(2), 20031. https://doi.org/10.25225/jvb.20031

  • Musser, G. G., & Carleton, M. D. (2005). Superfamily Muroidea. In D. E. Wilson & D. M. Reeder (Eds.), Mammal Species of the World: A Taxonomic and Geographic Reference (pp. 894–1531). Johns Hopkins University Press.

    Google Scholar 

  • Nicolas, V., Mikula, O., Lavrenchenko, L. A., Šumbera, R., Bartáková, V., Bryjová, A., Meheretu, Y., Verheyen, E., Missoup, A. D., Lemmon, A. R., Moriarty Lemmon, E., & Bryja, J. (2021). Phylogenomics of African radiation of Praomyini (Muridae: Murinae) rodents: First fully resolved phylogeny, evolutionary history and delimitation of extant genera. Molecular Phylogenetics and Evolution, 163, 107263. https://doi.org/10.1016/j.ympev.2021.107263

    Article  CAS  PubMed  Google Scholar 

  • Ogilvie, H. A., Bouckaert, R. R., & Drummond, A. J. (2017). StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Molecular Biology and Evolution, 34(8), 2101–2114. https://doi.org/10.1093/molbev/msx126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paradis, E., & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35(3), 526–528. https://doi.org/10.1093/bioinformatics/bty633

  • Perrigo, A., Hoorn, C., & Antonelli, A. (2020). Why mountains matter for biodiversity. Journal of Biogeography, 47(2), 315–325. https://doi.org/10.1111/jbi.13731

    Article  Google Scholar 

  • Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6(1), 7–11.

    Google Scholar 

  • Qufa, C. A., & Bekele, A. (2019). A preliminary survey of medium and large-sized mammals from Lebu Natural Protected Forest, Southwest Showa. Ethiopia. Ecology and Evolution, 9(21), 12322–12331. https://doi.org/10.1002/ece3.5733

    Article  PubMed  Google Scholar 

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032

  • Rannala, B., & Yang, Z. (2003). Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics, 164(4), 1645–1656. https://doi.org/10.1093/genetics/164.4.1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, P., Dorresteijn, I., Guilherme, J. L., Hanspach, J., De Beenhouwer, M., Hylander, K., Bekele, B., Senbeta, F., Fischer, J., & Nimmo, D. (2021). Predicting the impacts of human population growth on forest mammals in the highlands of southwestern Ethiopia. Biological Conservation, 256, 109046. https://doi.org/10.1016/j.biocon.2021.109046

    Article  Google Scholar 

  • Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39(1), 40–59. https://doi.org/10.2307/2992207

    Article  Google Scholar 

  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology61(3), 539–542. https://doi.org/10.1093/sysbio/sys029

  • Rupp, H. (1980). Beirage Zur systematic, Verbreitung und okologie athiopischer Nagetiere: Ergeb. Mehr. Forchung. Saugetierk. Mitt., 28, 81–123.

    Google Scholar 

  • Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289.

    Article  Google Scholar 

  • Shumi, G., Rodrigues, P., Schultner, J., Dorresteijn, I., Hanspach, J., Hylander, K., Senbeta, F., & Fischer, J. (2019). Conservation value of moist evergreen Afromontane forest sites with different management and history in southwestern Ethiopia. Biological Conservation, 232, 117–126. https://doi.org/10.1016/j.biocon.2019.02.008

    Article  Google Scholar 

  • Schliep, K. P. (2011). phangorn: Phylogenetic analysis in R. Bioinformatics, 27(4), 592–593. https://doi.org/10.1093/bioinformatics/btq706

    Article  CAS  PubMed  Google Scholar 

  • Tesfaye, G., Teketay, D., & Fetene, M. (2002). Regeneration of fourteen tree species in Harenna forest, southeastern Ethiopia. Flora-Morphology, Distribution, Functional Ecology of Plants, 197(6), 461–474. https://doi.org/10.1078/0367-2530-1210063

    Article  Google Scholar 

  • Teshome, E., Randall, D., & Kinahan, A. A. (2011). The changing face of the Bale Mountains National Park over 32 years: A study on land cover change. Walia - Journal of the Ethiopian Wildlife and Natural History Society, 2011, 118–130.

    Google Scholar 

  • The Nature and Biodiversity Conservation Union (NABU). (2017). NABU’s Biodiversity Assessment at the Kafa Biosphere Reserve. Addis Ababa.

    Google Scholar 

  • Trew, B. T., & Maclean, I. M. (2021). Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography, 30(4), 768–783. https://doi.org/10.1111/geb.13272

    Article  Google Scholar 

  • Veyrunes, F., Chevret, P., Catalan, J., Castiglia, R., Watson, J., Dobigny, G., Robinson, T. J., & Britton-Davidian, J. (2010). A novel sex determination system in a close relative of the house mouse. Proceedings of the Royal Society b: Biological Sciences, 277(1684), 1049–1056. https://doi.org/10.1098/rspb.2009.1925

    Article  PubMed  Google Scholar 

  • Voelker, G., Huntley, J. W., Bryja, J., Denys, C., Šumbera, R., Demos, T. C., Lavrenchenko, L., Nicolas, V., Gnoske, T. P., & Peterhans, J. K. (2021). Molecular systematics and biogeographic history of the African climbing-mouse complex (Dendromus). Molecular Phylogenetics and Evolution, 161, 107166. https://doi.org/10.1016/j.ympev.2021.107166

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. W., Boru, B. H., Njogu, A. W., Ochola, A. C., Hu, G. W., Zhou, Y. D., & Wang, Q. F. (2020). Floristic composition and endemism pattern of vascular plants in Ethiopia and Eritrea. Journal of Systematics and Evolution, 58(1), 33–42. https://doi.org/10.1111/jse.12527

    Article  Google Scholar 

  • Warren, D. L., Geneva, A. J., & Lanfear, R. (2017). RWTY (R We There Yet): An R package for examining convergence of Bayesian phylogenetic analyses. Molecular Biology and Evolution, 34(4), 1016–1020. https://doi.org/10.1093/molbev/msw279

    Article  CAS  PubMed  Google Scholar 

  • Winkler, A. J. (2002). Neogene paleobiogeography and East African paleoenvironments: Contributions from the Tugen Hills rodents and lagomorphs. Journal of Human Evolution, 42(1–2), 237–256. https://doi.org/10.1006/jhev.2001.0501

    Article  PubMed  Google Scholar 

  • Xie, W., Lewis, P. O., Fan, Y., Kuo, L., & Chen, M. H. (2011). Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2), 150–160. https://doi.org/10.1093/sysbio/syq085

    Article  PubMed  Google Scholar 

  • Yalden, D. W. (1988). Small mammals of the Bale mountains. Ethiopia. African Journal of Ecology, 26(4), 281–294. https://doi.org/10.1111/j.1365-2028.1988.tb00980.x

    Article  Google Scholar 

  • Yalden, D. W., & Largen, M. J. (1992). The endemic mammals of Ethiopia. Mammal Review, 22(3–4), 115–150. https://doi.org/10.1111/j.1365-2907.1992.tb00128.x

    Article  Google Scholar 

  • Yalden, D. W., Largen, M. J., & Kock, D. (1976). Catalogue of the mammals of Ethiopia: 2. Insectivora and Rodentia: pubblicazioni del centro di studio per la faunistica ed ecologia tropicali del cnr: cxi. Monitore Zoologico Italiano. Supplemento, 8(1), 1–118. https://doi.org/10.1080/03749444.1976.10736830

  • Yalden, D. W., Largen, M. J., Kock, D., & Hillman, J. C. (1996). Catalogue of the mammals of Ethiopia and Eritrea. 7. Revised checklist, zoogeography and conservation. Tropical Zoology, 9(1), 73–164. https://doi.org/10.1080/03946975.1996.10539304

Download references

Acknowledgements

We are grateful to A. Darkov (Joint Ethio-Russian Biological Expedition, Fourth Phase—JERBE IV) and S. Keskes (Ethiopian Ministry of Innovation and Technology) for managing the JERBE expedition. We thank P. Kaňuch, M. Lövy, A. A. Warshavsky, A. N. Milishnikov, V. M. Aniskin and Yu. F. Ivlev for their help with field sampling. P. Benda is acknowledged for his taxonomical suggestions.

Funding

This study was supported by the bilateral project of the Czech Science Foundation and the Russian Foundation for Basic Research (nos. 20-07091 J and 19–54-26003, respectively).

Author information

Authors and Affiliations

Authors

Contributions

LAL, RS, YM and JB conceived and designed the study; LAL, RS and JB provided funding; JK, LAL, RS, YM and JB collected the material; JK performed genotyping; OM collected morphometric data and performed all data analyses; LAL described the species in the taxonomic part; JK, OM, YM and JB wrote the first draft of the manuscript that was complemented by all authors. All authors also approved the final version of the manuscript.

Corresponding author

Correspondence to Josef Bryja.

Ethics declarations

Ethics approval

All fieldwork complied with legal regulations in Ethiopia and sampling was carried out with the permission of the Ethiopian Wildlife Conservation Authority and the Oromia Forest and Wildlife Enterprise.

Consent to participate

All authors gave consent to participate.

Consent for publication

All authors gave consent for publication.

Conflicts of interest/Competing interests

There are no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krásová, J., Mikula, O., Lavrenchenko, L.A. et al. A new rodent species of the genus Mus (Rodentia: Muridae) confirms the biogeographical uniqueness of the isolated forests of southern Ethiopia. Org Divers Evol 22, 491–509 (2022). https://doi.org/10.1007/s13127-022-00539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-022-00539-x

Keywords

Navigation